• Title/Summary/Keyword: 충돌현상

Search Result 440, Processing Time 0.028 seconds

Multiple Signature Comparison of LogTM-SE for Fast Conflict Detection (다중 시그니처 비교를 통한 트랜잭셔널 메모리의 충돌해소 정책의 성능향상)

  • Kim, Deok-Ho;Oh, Doo-Hwan;Ro, Won-W.
    • The KIPS Transactions:PartA
    • /
    • v.18A no.1
    • /
    • pp.19-24
    • /
    • 2011
  • As era of multi-core processors has arrived, transactional memory has been considered as an effective method to achieve easy and fast multi-threaded programming. Various hardware transactional memory systems such as UTM, VTM, FastTM, LogTM, and LogTM-SE, have been introduced in order to implement high-performance multi-core processors. Especially, LogTM-SE has provided study performance with an efficient memory management policy and a practical thread scheduling method through conflict detection based on signatures. However, increasing number of cores on a processor imposes the hardware complexity for signature processing. This causes overall performance degradation due to the heavy workload on signature comparison. In this paper, we propose a new architecture of multiple signature comparison to improve conflict detection of signature based transactional memory systems.

A Study on the Database Integration Methodology using XML (XML을 이용한 데이터베이스 통합방안에 관한 연구)

  • Oh Se-Woong;Lee Hong-Girl;Lee Chul-Young;Park Jong-Min;Suh Sang-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.883-890
    • /
    • 2005
  • Database Integration problems has been recognized as a critical issue for effective logistics service in logistics environment. However, researches related to effective methodology for this have been studied theoretically in the DB schema integration, are insufficient in the side of the system realization. The aim of this paper is to present a schema integration technique to integrate DB using XML( eXtensible Markup Language) in the part of practical DB integration, a quantitative methodology for the identification of conflict that is a representative problem on database integration. To achieve this aim, we extracted the entity name and attribute name from DB schema and suggested a quantitative methodology to easily fine name conflict that frequently give raise to a trouble when schema integration, based on the level of semantic similarity between attributes and entities.

Development of a Theoretical Wheelset Model to Predict Wheel-climbing Derailment Behaviors Caused by Rolling Stock Collision (철도차량 충돌에 의한 타고오름 탈선거동 예측을 위한 단일윤축 이론모델 개발)

  • Choi, Se-Young;Koo, Jeong-Seo;You, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • This study formulates the theoretical wheel-set model to evaluate wheel-climbing derailments of rolling stock due to collision, and verifies this theory with dynamic simulations. The impact forces occurring during collision are transmitted from a car body to axles through suspensions. As a result of combinations of horizontal and vertical forces applied to axles, rolling stock may lead to derailment. The derailment type will depend on the combinations of the horizontal and vertical forces, flange angle and friction coefficient. According to collision conditions, the wheel-lift, wheel-climbing or roll-over derailments can occur between wheel and rail. In this theoretical derailment model of wheelset, the wheel-climbing derailment types are classified into Climb-over, Climb/roll-over, and pure Roll-over according to derailment mechanism between wheel and rail, and we proposed the theoretical conditions to generate each derailment mechanism. The theoretical wheel-set model was verified by dynamic simulations.

A Study on Crash Analysis of Vehicle and Guardrail using a LS-DYNA Program (LS-DYNA 프로그램을 이용한 차량과 가드레일의 충돌해석에 관한 연구)

  • Kwon, O-Hyun;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.179-186
    • /
    • 2016
  • A study is to research crash barriers for vehicles that prevent road breakaway of vehicles and protect car passengers and pedestrians as absorbing impulse. Protection performance tests on vehicle passengers were simulated by using a LS-DYNA program. Through repetitive simulation on various speed and angles, passenger protection performance according to different impact condition was contemplated. Variable setting for the simulation was calculated as the mean weight of domestic car sales. By analyzing NASS (National Automotive Sampling System) of NHTSA (National Highway Traffic Safety Administration) of the U.S., the actual speed and collision angle section of accidents were computed. As a result, we confirmed that THIV (Theoretical Head Impact Velocity) and PHD (Post-impact Head Deceleration) are increased according to the impact speed and angle. Also, when the vehicle hit the guardrail post, we could be confirmed that the passenger protection performance greatly decreased.

Empirical Prediction of Acoustic Load of Launch Vehicle Including Jet Impingement (충돌제트 현상을 고려한 발사체 음향하중의 경험적 예측)

  • Park, Seoryong;Lee, Kyuho;Kong, Byunghak;Kang, Kyung Tai;Jang, Seokjong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-162
    • /
    • 2014
  • Empirical prediction method of the acoustic load on the fairing is based on jet experimental data on the basis of similarity principle. Representative empirical prediction method, DSM-II(Distributed Source Method-II), is a distributing source method along the jet plume. But the empirical prediction model is limited to reflect the impingement source in real environment because it is based on the free jet data. So, we propose a empirical prediction method considering the impinging jet effect by adding a impingement source in the existing prediction method. Considering the additional source's displacement, spectrum, strength and directivity, we calculate the acoustic load on the KSR-III(Korean Sounding Rocket-III) rocket and compare the results with the existing method and experiment data.

Analysis of impact damage behavior of GFRP-strengthened RC wall structures subjected to multiple explosive loadings (복합 폭발하중을 받는 GFRP 보강 RC 벽체 구조물의 비선형 충격 손상거동 해석)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1033-1036
    • /
    • 2008
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with glass fiber reinforced polymer (GFRP) composites are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a GFRP-strengthened RC wall structure.

  • PDF

Evaluation of Liquid Droplet Impingement Erosion through Prediction Model and Experiment (예측모델 및 실험을 통한 액적충돌침식 손상 평가)

  • Yun, Hun;Hwang, Kyeong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1105-1110
    • /
    • 2011
  • Flow-accelerated corrosion (FAC) is a well-known phenomenon that may occur in piping and components. Most nuclear power plants have carbon-steel-pipe wall-thinning management programs in place to control FAC. However, various other erosion mechanisms may also occur in carbon-steel piping. The most common forms of erosion encountered (cavitation, flashing, Liquid Droplet Impingement Erosion (LDIE), and Solid Particle Erosion (SPE)), have caused wall thinning, leaks, and ruptures, and have resulted in unplanned shutdowns in utilities. In particular, the damage caused by LDIE is difficult to predict, and there has been no effort to protect piping from erosive damage. This paper presents an evaluation method for LDIE. It also includes the calculation results from prediction models, a review of the experimental results, and a comparison between the UT data in the damaged components and the results of the calculations and experiments.

Analysis of the thermal fluid flow between the gas torch and the steel plate for the application of the line heating (선상 가열을 위한 가스 토치와 강판 사이의 열유동 해석)

  • Jong-Hun Woo;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.52-60
    • /
    • 2002
  • Line heating is a forming process which makes the curved surface with the residual strain created by applying heat source of high temperature to steel plate. in order to control the residual strain, it is necessary to understand not only conductive heat transfer between heat source and steel plate, but also temperature distribution of steel plate. In this paper we attempted to analyze is temperature distribution of steel plate by simplifying a line heating process to collision-effusive flux of high temperature and high velocity, and conductive heat transfer phenomenon. To analyze this, combustion in the torch is simplified to collision effusive phenomenon before analyzing turbulent heat flux. The distribution of temperature field between the torch and steel plate is computed through turbulent heat flux analysis, and the convective heat transfer coefficient between effusive flux and steel plate is calculated using approximate empirical Nusselt formula. The velocity of heat flux into steel plate is computed using the temperature distribution and convective heat transfer coefficient, and temperature field in the steel plate is obtained through conductive heat transfer analysis in which the traction is induced by velocity of heat flux. In this study, Finite Element Method is used to accomplish turbulent heat flux analysis and conductive heat transfer analysis. FEA results are compared with empirical data to verify results.

A Pseudo 3-Dimensional Structure of the Liquid-propellant Spray Emerging from Nonimpinging-type Injector (비충돌형 인젝터로부터 발생하는 액체추진제 분무의 준3차원 구조)

  • Jung, Hun;Kim, Jeong-Soo;Park, Jeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.17-24
    • /
    • 2010
  • This study was performed to make a close inquiry into a pseudo 3-dimensional structure of the liquid-propellant spray emerging from nonimpinging-type injector. Spray configuration near the injector exit was captured by a high-speed camera, and then its periodic phenomena (shedding) was observed. Detailed spatial structure of spray was investigated by spray characteristic parameters (velocity, diameter, volume flux, etc.) with the aid of a Dual-mode Phase Doppler Anemometry (DPDA). Experiment was carried out at various locations along the geometric axis of the nozzle orifice and on the plane normal to the spray stream with the injection pressures of 17.2 to 27.6 bar.

A Study on the heat transfer characteristics of a normal axisymmetric under-expanded impinging jet on a surface (수직 축대칭 과소팽창 충돌 제트의 표면 열전달 특성 연구)

  • Yu, Man-Sun;Kim, Byung-Gi;Cho, Hyung-Hee;Hwang, Ki-Young;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.84-91
    • /
    • 2005
  • An experimental investigation has been carried out to examine heat-transfer characteristics of an axisymmetric, under-expanded, sonic jet impinging on a flat plate and the local measurement of surface pressures and heat transfer coefficients on a plate have been achieved together with a visualization test of shock structure in a jet. Heat transfer coefficients on a plate have been found to be changed significantly depending on the under-expansion ratio as much as the nozzle-to-plate distance. These phenomena could be explained by the wall pressure measurement and the shock visualization.