• Title/Summary/Keyword: 충돌분무특성

Search Result 113, Processing Time 0.021 seconds

An Investigation on the Macroscopic Spray Behavior of Nonimpinging-type Injector through Optical Measurement Technique (광학계측기법에 의한 비충돌형 인젝터의 거시적 분무거동 고찰)

  • Kim, Jong-Hyun;Jung, Hun;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.143-148
    • /
    • 2012
  • This study is an investigation on macroscopic spray behavior of nonimpinging-type injector equipped on the hydrazine thruster under development. An electron microscope is employed for the acceptance examination of injector orifice. Initial performance characteristics and spray behavior of injector are observed through the instantaneous spray images which are captured by high speed camera and Schlieren method with varying injection pressures. The injector performance is scrutinized by the velocity along with penetration length of spray and categorized by dimensionless parameters. It is confirmed that there exist varying characteristics related to the spray breakup caused by fabrication errors of injector-orifices. Unexpected spray behavior, which needs to be reexamined, is grasped at specific pressure level, as well.

  • PDF

Spray Characteristics Depending Upon Impaction Land Surface Angle Variations (충돌면 경사각도 변화에 따른 분무특성)

  • Kim, C.H.;Kim, J.H.;Park, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.63-71
    • /
    • 1998
  • In a diesel engine the phenomenon of spray impaction on a combustion chamber wall has been taken as an undesirable matter because of the deposition of fuel on the surfaces, and the subsequent slow evaporation and mixing with air resulting in unburned hydrocarbons. Therefore many researches have concentrated on avoiding fuel impaction on surfaces. On the contrary done a number of studies using spray wall impactions in a positive way, which makes the droplets smaller, changes the direction into free spaces far from the wall and also improves mixing with air. In this paper the angle variations of the impaction land sufrace prepared for the injection spray is analysed as a simulative manner. The spray dispersions, vapor distributions and flow fields are compared with impacting angle variation. The results show more angle give more vapor distribution until $15^{\circ}$.

  • PDF

단요소 충돌형 분사기에 의한 액체추진제 연소성능의 수치적 연구

  • 황용석;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.2-2
    • /
    • 1999
  • 액체추진제 로켓엔진에서 분사기의 미립화 및 혼합 특성과 그에 따른 연소 특성은 성능과 안정성을 결정하는 중요한 파라미터이며 분사기는 제한된 설계 조건하에서 최대의 열방출율을 발휘하도록 설계되어야 한다. 여기서 연소효율은 연료와 산화제의 혼합특성과 충돌 분무의 미립화의 정도에 의해 결정되므로 충돌 분무 유동성의 혼합, 미립화 특성과 이에 따른 인조성능 특성을 명확하게 밝힘으로써 최대 엔진성능을 위한 설계가 가능하게 된다. 분사기의 설계에는 분사요소형태, 분사공의 형상 및 유동시스템 등이 포함되며 특히 분사요소 형태의 선택에는 추진제, 연소실냉각방법, 연소실 형상, 자동조건 및 엔진의 수명 등이 중요한 제한조건으로 고려된다. 이런 형태의 분사 요소들 중, 충돌형 분사기는 저장성 추진제를 사용하는 중, 저추력의 액체추진제 로켓엔진에 주로 사용된다. 이 분사형태는 미립화 성능이 높지 않고, 분사공 직경 및 운동량비에 따른 혼합성능이 만감하며 blow apart 등에 의한 열부하 혹은 안정성에 대한 문제가 있으나 양호한 혼합효율, 신뢰성과 제작의 용이함으로 인하여 광범위하게 사용된다.

  • PDF

Spray Characteristics on Impingement Angle Variation and Mixture ratio of Impinging Injectors (충돌각과 혼합비 변화에 따른 충돌형 분사기의 분무특성에 관한 연구)

  • Gang, Sin Jae;Song, Beom Geun;Song, Gi Jeong;Lee, Jeong Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.72-79
    • /
    • 2003
  • Spray characteristics were investigated by impinging F-O-O-F type injector with varying the impingement angle through 15, 20 and 30 degree and the mixture ratio(O/F ratio) from 1.5 to 3.0. Experimental results show that the correlation between dispersion and impingement angle is not influenced of the mixture ratio variation, but which has influence on number density, and there is a linear correlation between dispersion and impingement angle. Velocity distribution, standard deviation and SMD of droplets are decreased as the impingement angle increases. Also, it was confirmed that the distribution of droplet size are in accordance with Rosin-Rammler and Upper-limit distribution.

Analysis of the Spray Distribution Characterization of Impinging Jet Injectors for Liquid Rockets Using PLIF Technique (PLIF 기법을 이용한 액체로켓용 충돌분사 인젝터의 분무분포 특성 해석)

  • 정기훈;윤영빈;황상순
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.36-45
    • /
    • 2000
  • Most researches for impinging jet spray have been focused on under-standing the breakup mechanism of a liquid sheet formed by the collision of jets and modeling the spray breakup using experimental data. For this reason, there have been few studies on the characteristics of the spatial spray distribution which affects significantly the combustion efficiency. Hence, we measured the radial distribution of fuel massflux using a like-doublet type injector. Instead of PDPA(Phase Doppler Particle Analyzer) which has been used only for the point measurement of the drop size of spray, PLIF(Planar Laser Induced Fluorescence) technique was developed lot the 2-D measurement of the massflux distribution of spray Indirect photography technique was also used to verify PLIF data.

  • PDF

Spray Characteristics of Water-Gel Propellant by Impinging Injector (Water-Gel 모사 추진제의 충돌 분무 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Sang-Sun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.11-14
    • /
    • 2009
  • The implementation of gelled propellants systems offers high performance, thrust-control, energy management of propulsion, storability, and high density impulse of solid propulsion. Present study focused on the spray behavior of liquid sheets formed by impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are then compared with experiments conducted on spray images formed by impinging jets concerning with air-blast effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure, closed rim pattern shape appeared. As increasing air mass flow rate(decreasing GLR), spray breakup and atomization phenomenon better improved and spray structure instabilities for the effect of air-blast are also increased.

  • PDF

Experimental Investigation of Impinged Spray Characteristics of Oxygenated fuels Using BOS Method (BOS법을 이용한 함산소 연료들의 충돌분무특성에 관한 실험적 연구)

  • Bang, Seung Hwan
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.111-118
    • /
    • 2020
  • This paper describes the effect of DME, biodiesel blended fuels on the macroscopic spray characteristics in a high pressure diesel injection system using Background Oriented Schlieren (BOS) method. The BOS method for visualization of impingement evaporation sprays to analyze macroscopic spray properties and evolutionary processes. In this work, the blending ratio of DME in the blended fuel are 0, 50, 100% by weight ratio. In order to investigate the macroscopic impinged spray characteristics under the various injection parameters and blending ratio. In this work, a mini-sac type single-hole nozzle injector with nozzle hole was length 0.7 mm and diameter of 0.3 mm was used. According to the result, the spray area of the collision wall increased as the DME mixing ratio increased, and the evolutionary pattern showed a stepwise increase due to the collision effect of the wall. Also, results of impinged spray area were increased according to increasing injection pressure.

Analysis of the Impinging Spray Behavior Accompanying with Change of Phase (상변화를 동반한 충돌분무의 거동해석)

  • Song, Hong-Jong;Cha, Keun-Jong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.852-859
    • /
    • 2000
  • The emission in the exhaust gas from diesel engine is effected by the fuel spray characteristics. The spray of D.I. diesel engine impinges on a piston cavity and a cylinder wall. It is very important to know exactly the distribution and behavior of the spray inside cylinder. The objective of this study is to develop more accurate evaporation model. The EPISO code was used to analyze the flow characteristics in the engine. The Wakil model and the Faeth model are applied to the EPISO code to analyze the behavior of impinging spray. And also experimental and numerical analysis were carried out. The spray behavior characteristics were investigated by changing injection pressure, ambient pressure and temperature. The behavior of impinging spray was strongly effected by the change of ambient pressure and temperature. The effects of evaporation and rebounding droplet should be considered.

Numerical Analysis of the Formation of New Impinging Spray in the Combustion System (디젤연소실에서 새로운 충돌분무 형성에 대한 수치적 고찰)

  • Ryoo, Sung-Mok;Cha, Keun-Jong;Kim, Duck-Jool;Park, Kweonha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1625-1634
    • /
    • 1998
  • The objective of this study is to establish geometric guidelines for design of impaction parts prepared for removing undesirable effects of fuel deposition on a wall in small direct-injection diesel engines. In order to get the guidelines a new wall geometry is introduced and assessed, which has a flat top and a slant edge. The size of the flat top and the angle of the slant edge are varied and tested in same chamber condition, then their effects on spray dispersions and drop sizes are discussed. The results show that the case of 3.0mm flat top and $60^{\circ}$ edge angle gives the best spray characteristics for a small combustion chamber in the test conditions chosen in this paper.

Mass Distribution and Spray Characteristics to Liquid-Gas Line Selection of Unlike Triplet Impinging Injector (비동질 3중 충돌형 인젝터의 기체-액체 라인 선택에 따른 분무특성)

  • Lee, I.C.;Lee, C.J.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.205-211
    • /
    • 2006
  • Impinging angle, impinging distance, length eve. diameter and injection pressure of a triplet injector were tested to evaluate the spray characteristics injected by liquid/gas combinations. Two different kinds of unlike triplet sprays were produced by changing the gas and liquid feed lines. One was the G-L-G(Gas-Liquid-Gas) type, and the other was L-G-L(Liquid-Gas-Liquid) type. Spray angles were wider with the G-L-G type than with L-G-L type. Mass distributions in spray were obtained with a, mechanical patternator. Mass distributions were not circular but elliptical distributions. When the range of mechanical patternator to injector decreased, mass distributions were more concentrated in the center region.

  • PDF