• 제목/요약/키워드: 충격 손실 계수

Search Result 27, Processing Time 0.021 seconds

A Study on the Determination of Shock Loss Coefficient on the Branch in the Double-deck Road Tunnel for Small Car (소형차 전용 복층터널 분기부에서의 충격손실 계수 결정 연구)

  • Rho, Jang-hoon;Lee, Seung-jun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • In this study, the experiment for determining shock loss at the branch is conducted for the design of network double-deck road tunnel ventilation. The shock loss coefficient that determines the quantity of shock loss has been considered only regarding the constant aspect ratio of circular or rectangular section. However the suggestion of shock loss coefficient is needed since the aspect ratio of double-deck road tunnel for small vehicle is considered around 1:3 with the low height in Korea. The experiment model was made with the scale of around 1:23 applying Reynolds similarity law, so that the shock loss coefficient on the branch of the large aspect ratio was measured. The result of the study showed that shock loss coefficients of both split branch and straight branch were measured two to three times higher than those calculated from the theoretical equation or design values of previous studies. Therefore the study resulted the effect of large aspect ratio on shock loss coefficient was huge, and it is expected that precise design value can be suggested for the design of network double-deck tunnel ventilation.

Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구)

  • Park, Sang Hoon;Roh, Jang Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.132-145
    • /
    • 2017
  • Shock loss was not applied for the tunnel ventilation of road tunnel in the past. However, pressure losses due to the shock loss can be significant in network double-deck road tunnel in which combining and separating road structures exist. For the optimum ventilation design of network double-deck road tunnel, this study conducted 3D CFD numerical analysis for the shock loss at the combining and separating flows. The CFD model was made with the real-scale model that was the standard section of double-deck road tunnel. The shock loss coefficient of various combining and separating angles and road width was obtained and compared to the existing design values. As a result of the comparison, the shock loss coefficient of the $30^{\circ}$ separating flow model was higher and that of the two-lane combining flow model was lower. Since the combining and separating angles and road width can be important for the design of shock loss estimation, it is considered that this study can provide the accurate design factors for the calculation of ventilation system capacity. In addition, this study conducted 3D CFD analysis in order to calculate the shock loss coefficient of both combining and separating flows at flared intersection, and the result was compared with the design values of ASHRAE. The model that was not widened at the intersection showed three times higher at the most, and the other model that was widened at the intersection resulted two times higher shock loss coefficients.

A Numerical Analysis on the Determination of Shock Loss Coefficient at Flared Intersection of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 확폭구간에서의 충격손실 계수 결정을 위한 수치해석 연구)

  • Park, Yo Han;Lee, Seung Jun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.111-124
    • /
    • 2018
  • The purpose of this study is to analyze ventilation design factor for network-type double-deck road tunnel that have been developed actively around the world. A numerical analysis was carried out through computational fluid dynamics (CFD) to derive shock loss coefficient that occurs due to the change in cross sectional area at both merging section and diverging section. The model used for the numerical analysis is real-scale model and the reliability of the result is secured by comparing with the coefficient of the previous studies. As a result of this study, shock loss coefficient was calculated depending on the change in cross-sectional area ratio and was higher than the result of previous studies in case of both merging section and diverging section. It is considered that the characteristics of the geometrical structure of network-type double-deck road tunnel have a great impact on shock loss coefficient. Therefore, the result of this study is expected to be helpful for more accurate ventilation design of network-type double-deck road tunnel.

The dynamic stiffness of resilient materials for floor impact sound according to temperature change (온도변화에 따른 바닥충격음 완충재의 동탄성계수 변화)

  • Yeon, Junoh;Goo, Heemo;Lee, Sungchan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.338-342
    • /
    • 2018
  • In order to solve the floor impact sound problem in the upper and lower floors, the Ministry of Land, Transport and Maritime Affairs also notifies the physical properties of the resilient material affecting the floor impact sound level. The dynamic modulus of elasticity and the loss factor before and after heating are most related to the floor impact noise, especially for the cushioning material. Therefore, in this study, the rate of change with respect to the dynamic modulus and loss factor with temperature change was examined by increasing $10^{\circ}C$ by $10^{\circ}C$ from the temperature condition of $70^{\circ}C$ specified in the standard. The dynamic modulus of elasticity and the loss modulus were measured by using the pulse excitation method for eight kinds of samples. The calculation method was calculated by the time series analysis method using the damped vibration waveform.

Development of a Laboratory Test Device for the Performance Evaluation of Light-weight Impact Sound (경량충격음 성능 평가를 위한 실험실용 시험장치 개발)

  • 양수영;홍병국;송화영;김범수;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.505-508
    • /
    • 2004
  • 단열완충재 제품간의 경량충원 저감성능 평가를 객관적이고 신속하게 판별하기 위하여 실험실용 시험장치를 개발하였다. EVA계열 및 EPPㆍEPS계열의 단열완충재들에 대한 경량충격원 시험에서 제품간의 성능비교가 가능하였으며, 동탄성계수 및 손실계수 측정과 병행함으로써 제품들간의 우열성을 보다 정밀하게 평가할 수 있었다.

  • PDF

Investigating of a Floor-Impact Isolation System Using Damping Materials In Apartment Buildings (공동주택에서 완충재를 이용한 바닥충격음 저감 System 연구)

  • 송희수;정영;정정호;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.499-504
    • /
    • 2004
  • The purpose of this study is to investigate a investigating of a floor-impact isolation system using damping materials in apartment buildings. The stiffness elastic modulus(k) by puls impact forces were calculated loss factor by Hilbert transforms. It is absolved that natural frequency was moved floor shock-absorbing materials and the impact force was reduced by floor panel. The slab was constructed by damping materials. As towards a result, the system showed inverse A 45dB by heavy weight-impact noise and inverse A 52dB by light-impact noise. High frequencies impact-noise can be reduced by upgrading naturial frequency of vibration and noise in the system.

  • PDF

Study of Butterfly Valve Loss Coefficient Equation (버터플라이밸브 손실계수 표현식에 관한 연구)

  • Park, Jong-Ho;Park, Han-Yung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Linear curve or hyperbolic curve interpolation equations have been used to represent loss coefficient of butterfly valve according to a certain opening(for example, each 10 degree up to 90 degree) so far, and these equations are not precise and inconvenient to use with computer programming. Method of representing loss coefficient of butterfly valve using experiment data with several equations is presented and It is verified that log equation is most precise and convenient to use with computer programming in this research.

Development of Vibration and Impact Noise Damping Wood-Based Composites -Synthesis of the Polymer Showing a Broad Damping Peak (진동·충격음 흡수성 목질계 복합재료의 개발 -폭 넓은 감쇠곡선을 나타내는 고분자의 합성-)

  • Lee, Hyun-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.15-22
    • /
    • 1999
  • Polymeric meterials that are used for noise and vibration damper in wood/polymer/wood sandwich composites, must have a high loss factor(tan ${\delta}$), and at the same time the storage modulus(E) of $5{\times}10^7$ to $10^9$ dyne/$cm^2$ must withstand over a wide temperature and frequency ranges. In this study, the series of epoxy resinlpolyacrylate interpenetrating polymer networks(IPNs) were synthesized by simultaneous polymerization. Their dynamic tensile properties were measured at 110Hz using Rheovibron instrument. Composite damping factor(tan ${\delta}_c$) and dynamic bending modulus($E_c,\;E_^{\prime\prime}c$) of wood/polymer/wood sandwich composites were measured at 110Hz using a Rheovibron in bending mode of vibration. These dynamic tensile studies indicated that cured epoxy resin/polyacrylates IPNs were semicompatible in the sense that both the shifting of T($E^{\prime\prime}_{max}$) or T(tan ${\delta}_{max}$) and the broadening of glass transition temperature range were observed. Especially, the cured Epikote871/P(n-BMA) IPNs of composition 70/30 to 50/50 showed a relatively high tan a and appropriate E' value over a wide temperature range; consequently the tan a e curves of wood/IPNs/wood sandwich composites was broadened over a wide temperature range.

  • PDF

Vibration and Damping Characteristic of Composite Laminates Embedding Directional Damping Materials (방향성 있는 감쇠재료가 삽입된 복합적층판의 진동 및 감쇠특성)

  • 김성준
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.39-44
    • /
    • 2003
  • Embedding viscoelastic-damping materials into composites can greatly increase the damping properties of composite structures. Usually viscoelastic-damping materials behave isotropically so that their damping properties are the same in all directions. In these days, there is a desire to develop viscoelastic-damping materials that behave orthotropically so that damping properties vary with material orientation. These orthotropic damping materials can be made by embedding rows of thin wires within the viscoelastic materials. These wires add significant directional stiffness to the damping materials. where the stiffness variation with wire orientation follows classical lamination theory. In this paper, the loss factor of composite laminate was evaluated based on Ni and Adams' theory. To investigate the effect of directional damping material, the low-velociy impact response analysis was also performed. The present analysis results show that directional damping material has a great influence on vibration and damping characteristic of composite laminate.