• Title/Summary/Keyword: 충격 메커니즘

Search Result 83, Processing Time 0.024 seconds

Approximate Analysis Model and Detailed Unsteady Structure of Oblique Detonation Waves (경사 데토네이션파의 근사 해석 모델과 비정상 상세구조)

  • Choi Jeong-Yeol;Kim Don-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.136-140
    • /
    • 2005
  • By extending one-dimensional ZND detonation structure analysis model, a simple model for two-dimensional oblique detonation wave structure analysis is presented by coupling Rankine-Hugoniot relation and chemical kinetics for oblique shock wave and oblique detonation wave. Base on this study, two-dimensional fluid dynamics analysis is carried out to investigate the detailed unsteady structure of oblique detonation waves involving triple point, transverse waves and cellular structures. CFD results provide a deeper insight into the detailed structure of oblique detonation waves, and the simple model could be used as a unified design tool for hypersonic propulsion systems employing oblique detonation wave as combustion mechanism.

  • PDF

The Development of Pyrotechnically Releasable Mechanical Linking Device Using Pressure Cartridge (압력카트리지를 이용한 파이로 분리장치 개발)

  • Kim, Dong-Jin;Lee, Yeung-Jo;Ko, Young-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.340-343
    • /
    • 2011
  • Explosive bolts are reliable and efficient mechanical fastening devices having the special feature of a built-in release. The disadvantage of explosive bolt lies in that it is based on the high explosive effect of a pyrotechnic charge. The aim of the present work is to propose a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. The pyro-lock using the pressure cartridge has the release characteristic without fragmentation and minimum pyro-shock. The present work is focused on the design, the interpretation of structure, the separation mechanism, separation force, and the results of various tests.

  • PDF

Design of Dynamic Characteristics Adjustable Integrated Air Spring-Damper Mechanism for Dual Shock Generation System (동특성 가변형 에어스프링-댐퍼 일체 구조의 이중 충격 발생장치 설계)

  • Yeo, Sung Min;Shul, Chang Won;Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.331-341
    • /
    • 2018
  • This study proposes an integrated serial spring-damper mechanism as a dual pulse generation system. Compared to the traditional dual pulse generation system, which used multiple springs and a damper to generate a dual pulse critical for impact testing of naval equipments, currently used separated serial spring-damper mechanism is comprised of two components: an air spring, and a damper. The proposed mechanism combines the two components into one integrated system with a unique design that lets simply changing the volume and the pressure of the air tank, and the length of the annular pipe adjust the stiffness and damping constants for testing, eliminating the need to have multiple sets of air springs and dampers. Simulations using MatLab and Simulink were conducted to verify the feasibility of this design. The results show the potential of an integrated serial spring-damper mechanism as a more convenient and flexible mechanism for dual pulse generation system.

Numerical Simulations of Dynamic Response of Cased Reactive System Subject to Bullet Impact (총탄 충격이 가해진 반응 시스템의 파괴 거동에 관한 수치적 연구)

  • Kim, Bohoon;Kim, Minsung;Doh, Youngdae;Kim, Changkee;Yoo, Jichang;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.525-538
    • /
    • 2014
  • Safety of reactive systems is one of the most important research areas in the field of weapon development. A NoGo response or at least a low-order explosion should be ensured to prevent unexpected accidents when the reactive system is impacted by high-velocity projectile. We investigated the shock-induced detonation of cased reactive systems subject to a normal projectile impact to the cylindrical surface based on two-dimensional hydrodynamic simulations using the I&G chemical rate law. Two types of energetic materials, namely LX-17 and AP-based solid propellant, were considered to compare the dynamic responses of the reactive system when subjected to the threshold impact velocity. It was found that shock-to-detonation transition phenomena occurred in the cased LX-17, whereas no full reaction occurred in the propellant.

Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes (단면형상이 다른 Al/CFRP 혼성박육부재의 축압궤특성)

  • Hwang, Woo Chae;Lee, Kil Sung;Cha, Cheon Seok;Kim, Ji Hoon;Ra, Seung Woo;Yang, In Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.959-965
    • /
    • 2014
  • In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $0^{\circ}$ was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $90^{\circ}$ was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively.

Development of Water Hammer Simulation Model for Safety Assessment of Hydroelectric Power Plant (수력발전설비의 안전도 평가를 위한 수충격 해석 모형 개발)

  • Nam, Myeong Jun;Lee, Jae-Young;Jung, Woo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.760-767
    • /
    • 2020
  • Sustainable growth of hydroelectric power plants is expected in consideration of climate change and energy security. However, hydroelectric power plants always have a risk of water hammer damage, and safety assurance is very important. The water hammer phenomenon commonly occurs during operations such as rapid opening and closing of the valves and pump/turbine shutdown in pipe systems, which is more common in cases of emergency shutdown. In this study, a computational numerical model was developed using the MOC-FDM scheme to reflect the mechanism of water hammer occurrence. The proposed model was implemented in boundary conditions such as reservoir, pipeline, valve, and pump/turbine conditions and then applied to simulate hypothetical case studies. The analysis results of the model were verified using the analysis results at the main points of the pipe systems. The model produced reasonably good performance and was validated by comparison with the results of the SIMSEN package model. The model could be used as an efficient tool for the safety assessment of hydroelectric power plants based on accurate prediction of transient behavior in the operation of hydropower facilities.

A Study on the Low Speed Impact Response and Frictional Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabrics (전단농화유체를 함침한 케블라 직물의 저속충격 거동 및 마찰특성 연구)

  • Lee, Bok-Won;Lee, Song-Hyun;Kim, Chun-Gon;Yoon, Byung-Il;Paik, Jong-Gyu
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.15-24
    • /
    • 2008
  • In this study, shear thickening fluid (STF) filled with rigid nano silica particles was impregnated in plain woven Kevlar fabrics to improve the impact resistance performance. The nano silica particles with an average diameter of 100nm, 300nm, and 500nm were used to make shear thickening fluid to estimate the effect of particle size on the impact behavior of STF impregnated Kevlar fabrics. The yam pull-out and frictional tests were conducted to estimate the effect of impregnated STF on the frictional characteristics. The test results showed that the friction forces were dramatically increased at the STF onset shear strain rates that were measured in preliminary rheology tests. The low speed impact tests were performed using the drop test machine. The results showed that the impregnated STF improved the impact resistance performance of the Kevlar fabrics in terms of the impact energy absorption and the deformation. It has been shown through tests that the impregnated STF affects the interfacial friction which contributes to improve the energy absorption in the Kevlar fabrics. Especially, the impregnation of the STF with the smaller particle size into the Kevlar fabrics showed the better performance in impact energy absorption.

Development on mechanism for opening sensitivity quality improvement of oven range door using nonlinear cam and spring (비선형 캠과 스프링을 이용한 오븐 렌지 도어의 열림 감성 품질 향상 메커니즘 개발)

  • Kim, Hwi-Yeon;Yun, Jae-Deuk;Jung, Yoong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.616-624
    • /
    • 2014
  • Most of oven range doors are opened from top to down. Feeling of door in case of home appliances including oven ranges affects the quality of product. The major factors to evaluate the feeling quality are opening force, closing force, and bouncing effect happened when the door is opened completely. If opening and closing forces become large, consumers may have complaints. If the bouncing effect becomes large, the impact can cause the body as well as the door to damage. Opening and closing forces, and bouncing effect must be minimized to improve the feeling quality. In this study, the mechanism which improves the existed dual compressive spring and cam structure is suggested by using nonlinear cam and spring. After the nonlinear cam is designed and manufactured for the suggested mechanism, this cam is confirmed to become more superior than the existed one by applying it to the practical oven range.

Comfort Analysis of Mono-ski with Hydraulic Absorber (모노스키 유압 완충장치 특성에 따른 탑승 안락감 평가)

  • Cho, Hyeon-Seok;Park, Jin-Kook;Kim, Gyoo-Seok;Mun, Mu-Sung;Kim, Chang-Boo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.131-140
    • /
    • 2015
  • The mono-ski for the paraplegia designed to skiing is formed as seat bucket on the sled. The impact force transferred by snow surface during skiing is absorbed by the leg joints of normal human, but it is transferred to the human body on the seat when using mono-ski. Most of commercially available mono-ski have absorbing device and link mechanism between seat and ski mount in order to complement it. In this study we developed the comfort evaluation model that could provide skiing simulation of mono-ski with hydraulic damper and analyzed vibrational acceleration occurred during skiing uneven surface. The evaluation method used in this study is the international standard BS6841. We evaluated comfort performance of mono-ski in accordance with nozzle adjustment of hydraulic damper.

Impact Source Location on Composite CNG Storage Tank Using Acoustic Emission Energy Based Signal Mapping Method (음향방출 에너지 기반 손상 위치표정 기법을 이용한 복합재 CNG 탱크의 충격 신호 위치표정)

  • Han, Byeong-Hee;Yoon, Dong-Jin;Park, Chun-Soo;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • Acoustic emission (AE) is one of the most powerful techniques for detecting damages and identify damage location during operations. However, in case of the source location technique, there is some limitation in conventional AE technology, because it strongly depends on wave speed in the corresponding structures having heterogeneous composite materials. A compressed natural gas(CNG) pressure vessel is usually made of carbon fiber composite outside of vessel for the purpose of strengthening. In this type of composite material, locating impact damage sources exactly using conventional time arrival method is difficult. To overcome this limitation, this study applied the previously developed Contour D/B map technique to four types of CNG storage tanks to identify the source location of damages caused by external shock. The results of the identification of the source location for different types were compared.