• Title/Summary/Keyword: 충격파 펄스

Search Result 56, Processing Time 0.02 seconds

Shock Compression of Metal using High Energy Laser and Innovative Applications (고 에너지를 이용한 충격파 발생과 응용)

  • Lee, Hyun-Hee;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.353-357
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave propagates through the foil. The shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is applying shock wave and deformation of the thin foil from the ablation to accelerating micro-particles to a very high speed.

  • PDF

Dynamic Pressure Characteristics of Pulse Gun Device for Combustion Stability Rating of Liquid Rocket Engines (액체 로켓엔진 연소 안정성 평가를 위한 압력 교란 장치 특성 연구)

  • Seo,Seong-Hyeon;Go,Yeong-Seong;Lee,Gwang-Jin;Park,Seong-Jin;Lee,Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.94-99
    • /
    • 2003
  • For the assessment of combustion stability of a liquid rocket engine, a device called "Pulse Gun" should be developed first, which can induce artificial perturbations that may lead to excitations of pressure oscillations in a combustion chamber. A model chamber has been used for identifying design parameters of a pulse gun that defines its characteristics. Dynamic pressure measurements showed that shock waves generated from pulse guns are axisymmetric around the axis of a pulse gun barrel. Pressure waves perturbed by a pulse gun induce resonant acoustic frequencies of a model chamber. This fact indicates that successful pressure field perturbations of the KSR-III combustion chamber can be performed by a newly developed pulse gun device. A maximum value of dynamic pressure peaks measured at the opposite point against a pulse gun outlet becomes stronger as charge mass of pulse gun powder increases.

Experimental and Computational Studies of the Pulse Wave Impinging upon a Vertical Flat Plate (수직평판에 충돌하는 펄스파에 관한 실험적/수치해석적 연구)

  • 이동훈;김희동;강성황
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.285-291
    • /
    • 2001
  • The impingement of a weak shock wane discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Experiments were carried out to validate the present computations. The effects of the flat plate and baffle plate sizes on the impinging flow field over the flat plate were investigated. Shock Mach number was varied in the range from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

Development of Multi-channel Simultaneous Laser Shock Sensing System for Linear Explosive-induced Pyroshock Propagation Prediction (선형화약 파이로 충격파 전파 예측을 위한 다채널 동시 레이저 충격파 센싱 시스템 개발)

  • Jang, Jae Kyeong;Abbas, Haider;Lee, Jung Ruyl
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.46-51
    • /
    • 2015
  • Multi-channel DAQ system was developed to predict propagation characteristic of the shock wave generated by linear explosive. The system can generate shock wave from 1000 points per second using a pulsed laser and simultaneously obtain the shock wave signals using 15 chanel contact sensor. The system is expected to pridict the propagation characteristics of various linear explosive-induced pyroshock because it can be used with a user-defined time delay that corresponds to detonation speed of the linear explosive.

Effect of Tube Area on the Impulse Wave Discharged from the Exit of Tube (관출구로부터 방출되는 펄스파에 미치는 관단면적의 영향)

  • Shin, Hyun-Dong;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.544-549
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and causes serious noise and vibration problems. In the current study, the effect of the cross-sectional area of tube on the impulse wave is numerically investigated using a CFD method. The Harten-Yee's total variation diminishing(TVD) scheme is used to solve the axisymmetric, two-dimensional, unsteady, compressible Euler equations. With three different cross-sectional areas of tube, the Mach number of the incident shock wave $M_{s}$ is varied between 1.01 and 1.5. The results obtained show that the directivity and magnitude of impulse wave strongly depend upon the Mach number of incident shock wave and are influenced by the tube area. It is also known that the tube cross-sectional area significantly affects the magnitude of impulse wave at or near the tube axis.

  • PDF

An Experimental Study on the Propagation Characteristics of the Impulse Noise from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성에 관한 실험적 연구)

  • Heo, Sung-Wook;Lee, Myeong-Ho;Lee, Dong-Hoon;Hwang, Yoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.15-21
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube facility. The pressure amplitudes and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are measured and analyzed for the range of the incident weak shock wave Mach number between 1.02 and 1.2. In the experiments. the impulse waves are visualized by a Schlieren optical system for the purpose of understanding their propagation characteristics. The results obtained show that for the near sound field the impulse noise strongly propagates toward the pipe axis, but for the far sound field the impulse noise uniformly propagates toward the omnidirections, indicating that the directivity pattern is almost same regardless of the pipe type. For this non-directivity in the far sound field, it is shown that the perforated pipe has little performance to suppress the impulse noise.

Vibration Characteristics of the Collecting Plates in Electrostatic Precipitator (정전집진기 집진판의 진동 특성)

  • 나종문;이기백;양장식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.313-317
    • /
    • 1995
  • 최근 환경오염이 심각한 사회문제로 대두됨에 따라 환경오염원을 제거하기 위한 여러 가지의 집진장치가 개발되고 있는데 화력발전소에서는 건식정전집진장치(dry electrostatic precipitator)를 이용하고 있다. 건식정전집진장치는 햄머(hammer) 방식의 충격장치를 설치하여 집진극과 방전극에 충격을 가함으로써 충격력을 극대화시키고 높은 분진박리 효과를 꾀하고 있는데 환경오염원이 되고 있는 집진판의 분진의 분리율을 높이기 위해서는 집진판의 전체 영역에서 분진을 동일하게 떨어뜨릴 수 있는 충격장치가 설계되어야 하는데, 이를 위해서는 충격하중에 따른 집진판의 진동 형태를 정확하게 분석하여야 한다. 본 연구에서는 집진판의 충격하중에 따른 진동의 형태를 분석하기 위해 펄스 레이저를 이용한 2중 노출 홀로그래피 시스템을 구성하였다. 홀로그래픽 간섭계는 이미 오래 전에 개발된 레이저 응용 계측기법으로서 주로 정현적인 진동을 하는 진동체의 진동 현상을 연구하는 데에 많이 사용되어 왔는데 그 기술 개발은 상당한 수준에 있다. 그러나 종래의 기술들은 주로 헬륨-네온(He-Ne)레이저와 같은 연속 레이저(continuous wave laser)를 이용한 기술들인데 최근에는 루비(ruby) 레이저와 같은 펄스 레이저 (pulse laser)를 이용한 기술이 많이 응용되고 있다. 이 펄스 레이저 홀로그래픽 간섭계를 Gottenberg는 응력파에 의해서 발생된 변형을 측정하기 위해 사용하였고 Aprahamian등은 보(beam)와 평판의 굽힘파(bending wave)의 전파 특성 연구에 이용하였다. 그 실험적 결과는 수치적 해석 결과와 비교되어 매우 좋은 일치성을 보였는데 이러한 펄스 레이져 홀로그래픽 간섭계 기법의 주요 장점은 어떠한 특정한 순간에 관찰하고자 하는 시험편의 전체 영역의 파동 전파 형상을 관찰할 수 있다는 것이다. 따라서 본 연구에서는 펄스 레이저를 응용한 2중 노출 홀로그래피법(double exposure holography method)을 이용해서 집진판에 충격하중이 가해졌을 때 발생하는 진동이 발생과 전파 특성을 충격하중의 방향에 따라서 분석하였다.

  • PDF

Development of a High Voltage Pulse Generator to Process of Underwater (슬러지 전처리 공정을 위한 고전압 펄스 전원시스템의 개발)

  • Park, Sang-Wook;Lee, Kyung-Tae;Son, Byung-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1785-1787
    • /
    • 2002
  • 폐수에서 발생하는 슬러지(Sluge)의 효과적인 처리를 위한 전기적 충격파를 발생시키는 장치로 고전압 펄스 전원 시스템을 제작하였다. 제작한 고전압 펄스 전원 시스템의 제원은 최대 출력 전압 60 kV, 최대 반복 주파수 500 Hz 이며, 한 펄스 당 최대 출력 에너지는 20 J 이다.

  • PDF

Computational Study of The Pulse Waves Discharged From The Open End of a Duct (관 출구로부터 방출되는 펄스파의 수치해석적 연구)

  • Kim, H.D.;Kim, H.S.;Kweon, Y.H.;Lee, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.355-360
    • /
    • 2001
  • This study addresses a computational work of the impulsive wave which is discharged from the open end of a pipe. An initial compression wave inside the pipe is assumed to propagate toward atmosphere. The over pressure and wave-length of the initial compression wave are changed to investigate the characteristic values of the impulsive wave. The second order total variation diminishing (TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compression wave form and impulsive wave is characterized in terms of the peak pressure of the impulsive wave and its directivity. The results obtained show that for the initial compression wave of a large wave-length the peak pressure of the impulsive wave does not depend on the over pressure of the initial compression wave, but for the initial compression wave of a very short wave-length, like a shock wave, the peak pressure of the impulsive wave is increased with an increase in the over pressure of the initial compression wave. The directivity of the impulsive wave to the pipe axis becomes significant with a decrease in the wave-length of the initial compression wave.

  • PDF

An Experimental Study of the Impulsive Wave Discharged from a Curved Duct (곡관으로부터 방출되는 펄스파에 관한 실험적 연구)

  • Lee, D.H.;Kim, H.D.;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.317-322
    • /
    • 2001
  • This study depicts an experimental work of the impulsive wave discharged from the open end of several kinds of right-angle bend pipes, which are attached to the open end of a simple shock tube. The weak normal shock wave with its magnitude of Mach number from 1.03 to 1.20 is employed to obtain the impulsive wave propagating outside the open end of the bend pipes. The experimental data of the magnitude of the impulsive wave and its propagation directivity are analyzed to characterize the impulsive waves discharged from the right-angle bend pipes and compared with those from a straight pipe. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulsive wave and its directivity toward to the pipe axis, compared with the straight pipe. It is believed that the right angle miter bend pipe can playa role of passive control against the impulsive wave.

  • PDF