• Title/Summary/Keyword: 충격파손

Search Result 165, Processing Time 0.025 seconds

A Study on the Strength Characteristics and Failure Detection of Single-lap Joints with I-fiber Stitching Method (I-fiber 스티칭 공법이 적용된 Single-lap Joint의 강도 특성 및 파손 신호 검출 연구)

  • Choi, Seong-Hyun;Song, Sang-Hoon;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.317-322
    • /
    • 2021
  • When a complex load such as torsion, low-speed impact, or fatigue load is applied, the properties in the thickness direction are weakened through microcracks inside the material due to the nature of the laminated composite material, and delamination occurs. To prevent the interlaminar delamination, various three-dimensional reinforcement methods such as Z-pinning and stitching, and structural health monitoring techniques that detect the microcrack of structures in real time have been continuously studied. In this paper, the single-lap joints with I-fiber stitching process were manufactured by a co-curing method and their strengths and failure detection capability were evaluated. AE and electric resistance method were used for detection of crack and failure signal and electric circuit for signal analysis was manufactured, and failure signal was analyzed during the tensile test of a single-lap joint. From the experiment, the strength of the single lap joint reinforced by I-fiber stitching process was improved by about 44.6% compared to the co-cured single lap joint without reinforcement. In addition, as the single-lap joint reinforced by I-fiber stitching process can detect failure in both the electrical resistance method and the AE method, it has been proven to be an effective structure for failure monitoring as well as strength improvement.

Probabilistic Assesment of the Effects of Vapor Cloud Explosion on a Human Body (증기운 폭발이 인체에 미치는 영향에 대한 확률론적 평가)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.52-65
    • /
    • 2021
  • In this study, authors analyzed the vapor cloud explosion induced by propane leak at the PEMIX Terminal, which is the propane storage facility outside of Mexico City. TNT equivalence mass for the leaked 4750 kg propane was estimated to be 9398 kg. Blast parameters such as peak overpressure, positive phase duration, and impact at 40-400 (m) away from the center of the explosion were calculated by applying TNT Equivalency Method and Multi-Energy Method. The probability of damage due to lung damage, eardrum rupture, head impact, and whole-body displacement impact by applying the probit function obtained using blast parameters was evaluated. The peak overpressure obtained using Multi-Energy Method was found to be greater than the peak overpressure obtained by applying the TNT Equivalency Method at all distances considered, but it was evaluated that there was no significant difference from the points above 200 m. The peak overpressure obtained by Multi-Energy Method was computed to assess the extent of damage to the structure, and it was shown that structures within 100 m of the explosion center would collapse completely, and that the glasses of the structures 400 m away would be almost broken. The probability of death due to lung damage was shown to vary depending on a human body's position located in the propagating direction of shock wave, and if there is a reflecting surface in the immediate surroundings of a human body, the probability of death was estimated to be the greatest. The impact of shock wave on lung damage, eardrum rupture, head impact, and whole-body displacement impact was evaluated and found to affect whole-body impact < lung damage < eardrum rupture

A Study on the ballistic impact resistance and dynamic failure behavior of aramid FRMLs by high velocity impact (고속충격에 의한 아라미드 섬유강화 금속적층재의 방탄성능 및 동적파손거동에 관한 연구)

  • 손세원;이두성;김동훈;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.527-532
    • /
    • 2000
  • The armor composite material targets such as aramid FRMLs with different type and ply number of face material and different type of back-up material, were studied to determine ballistic impact resistance and dynamic failure behavior during ballistic impact. Ballistic impact resistance is determined by $\textrm{V}_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Also dynamic failure behaviors are respectfully observed that result from $\textrm{V}_{50}$ tests. $\textrm{V}_{50}$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during high velocity impact tests. As a result, ballistic impact resistance of anodized Al 5052-H34 alloy(2 ply) is better than that of anodized Al 5052-H34 alloy(1 ply), but Titanium alloy showed the similar ballistic impact resistance. In the face material, ballistic impact resistance of titanium alloy is better than that of anodized Al 5052-H34 alloy. In the back-up material, ballistic impact resistance of T750 type aramid fiber is better than that of CT709 type aramid fiber.

  • PDF

Prediction of Ships' Bow Structural Damage during Collisions (충돌시 선수구조의 손상추정에 관한 연구)

  • P.D.C. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.92-102
    • /
    • 1992
  • Prediction of energy absorption for bow structure is important for a design of protective structures against collision. For the crushing behaviour of basic element of energy absorption, the plastic mechanism method is applied. The ship's crushing strength of bow section is obtained by summing the energy dissipated in all individual elements. The theoretical predictions are compared with experimental results for ship's bow models published with experimental results for ship's bow models published in the references, and it is observed that the present prediction method of crushing strength correlates well with the experimental results.

  • PDF

Optimal Design of Passenger Airbag Door System Considering the Tearseam Failure Strength (티어심 파손 강도를 고려한 동승석 에어백 도어시스템의 최적 설계)

  • Choi, Hwanyoung;Kong, Byungseok;Park, Dongkyou
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.60-68
    • /
    • 2021
  • Invisible passenger airbag door system of hard panel types must be designed with a weakened area such that the side airbag will deploy through the instrument panel as like intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test. If the advanced airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of invisible passenger airbag (IPAB) door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. It was introduced the 'Operating Window' idea from quality engineering to design the hard panel types of IPAB door system applied to the advanced airbag for optimal deployment and head impact performance. Zigzab airbag folding and 'n' type PAB mounting bracket were selected.

Characterization and 3D Analysis of PETG/POE Thermoplastic Composites (PETG/POE 열가소성 복합재료의 특성평가 및 전산해석)

  • Yu, Seong-Hun;Lee, Jong-Hyuk;Sim, Ji-Hyun
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.360-367
    • /
    • 2019
  • In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability, mechanical properties and 3D analysis of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out enhanced various weight percent POE(polyolefin elastomer). The thermal and mechanical properties of the thermoplastic composites, and the charpy impact strength, The analysis was performed to evaluate the characteristics according to weight percent of POE. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

Dynamic Fracture Properties of Nylon Thermoplastic Material Depending on Notch Angle with Charpy Impact Machine and Finite Element Method (유한요소법과 샤피충격시험기에 의한 노치각도에 따른 나일론 열가소성 플라스틱 재료의 파괴특성)

  • Park, Myung-Kyun;Lee, Jung-Won;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The notched Charpy impact test is one of the most prevalent techniques used to characterize the effect of high impulse loads on polymeric materials. In this study, a method of analysis in nylon plastic materials is suggested to evaluate the critical strain energy release rate for variation of notch angles from the Charpy impact energy measurement. Instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture properties and maximum critical load. The dynamic stress intensity factor of nylon plastic material was calculated for the ASTM Charpy specimen from the obtained maximum critical load. Also, the finite element model was developed to figure out the stress distributions for Charpy specimen with different notch angles subject to 3 point bending load which is equivalent to the load applied in the experiment.

  • PDF

Effects of Explosion on Structures (폭발이 구조물에 미치는 영향)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.10-16
    • /
    • 2019
  • Information on overpressure, positive phase duration, and impulse are required to assess the effects of shock waves or pressure waves on the structure. In this study, the overpressure and positive phase duration were determined by applying the Multi-Energy Method, which is found to be effective in analyzing the explosion of vapor clouds. Based on the total heat of combustion estimated in the cyclohexane vapor cloud explosion in the Nypro Ltd(UK), overpressure and positive phase duration at the distance of 40, 80, 120, 160, 200, 240, 280, 320, 360(m) from the source of explosion were evaluated. Overpressure was shown to decrease exponentially and positive phase duration increased almost linearly with distance. A probit function was used to assess the probability of damages for the structures at each distance using the overpressure and impact obtained at the above mentioned distances. The Analyses of probability of damages have shown that there is a high probability of collapse at distances within 120m, major damage to structures within 240m, and minor damage and breakage of window panes of structures occur over the entire distances.

A Study on Seismic Restraint of Korean Type Building Gas Piping (한국형 건축물 가스 배관의 내진 고정장치에 관한 연구)

  • Lim, Geon-Tae;Lim, Sang-Ho
    • Industry Promotion Research
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • This study relates to a fixing device for gas piping installed in a building such as an apartment or a building. The gas piping is fixed to the inside of the housing so as to buffer the gas piping in all directions, thereby relieving vibration caused by an earthquake or an impact, Disclosed is an earthquake-proof fixing device for a gas pipeline that can minimize damages caused by damage to an earthquake and a gas pipeline by preventing damage and breakage. An apparatus for fixing a gas pipe to a bracket provided on a wall or a wall of a building, the apparatus comprising: a housing coupled to a wall or a bracket and coupled to the inside of the housing; a gas pipe penetrating through the housing to fix the gas pipe; The first plate spring includes a first plate spring formed with a plurality of concave-convex portions that are elastically supported in four directions. The first plate spring is screwed to the front surface or the rear surface of the housing. The lower plate is coupled to one end and the other end, And a pair of first adjusting screws for adjusting the elastic force of the spring. Through this study, damage and damage of gas piping due to earthquake or impact can be minimized.

Correlation between Egg Breakage and Cumulative External Forces on Eggs during Egg Collection in Laying Hen Farms (산란계 농장 계란 이송라인의 누적충격강도와 파각발생율의 상관성 분석)

  • Dong-Hae Joh;Byung-Yeon Kwon;Da-Hye Kim;Da-Hye Kim;Kyung-Woo Lee
    • Korean Journal of Poultry Science
    • /
    • v.50 no.1
    • /
    • pp.23-30
    • /
    • 2023
  • This study was conducted to analyze the correlation between egg breakage rate and cumulative external forces on eggs during the egg transfer system in 12 commercial layers farms. The commercially available electronic egg device was used to detect the external forces on eggs during egg collection systems. In addition, egg breakage rate per farm was collected. It was found that the external force on eggs were greater in the order of washer and dryer connection part, conveyor connection part, transfer, sorter, collecting elevator, packer, egg transfer connection part, and egg tray. A positive relationship between the external forces on eggs during egg transit system and the incidence of cracked eggs per farm was noted. The external forces on eggs varied from 5G to 38G depending on the location and the egg breakage rate ranged from 3.2 to 14.5% per farm. Although efforts to produce eggs with high eggshell quality are considered important, extra care should be made to lower the external forces on eggs during the egg transfer system from laying house to egg packing center.