• Title/Summary/Keyword: 충격저감장치

Search Result 26, Processing Time 0.02 seconds

The Development of Mechanical Damper Using the Friction Pendulum Principle (마찰 진자 원리를 적용한 기계식 댐퍼의 개발에 관한 연구)

  • Lee, You-In;Han, Woo-Jin;Ji, Yong-Soo;Baek, Jun-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.361-368
    • /
    • 2015
  • Recently, the earthquake has been increasing a lot, damage of electric power facility has been serious as well. Nowadays, the importance of pipe support system such as Hanger, Brace, Snubber connecting the main structure have been emphasized. These devices can prevent pipe from damage so that reduce the vibration and shock acting on the pipe. For this reason, the FCD(Friction Concave Damper) was developed and has been expected to reduce the vibration on the pipe through the Friction Pendulum System. This paper was described the introduction of self-developed mechanical damper using the friction pendulum principle and the characteristic test was performed to verify the performance of the device. Additionally the test results have been compared with predicted F.A.P(FCD Analysis Program-self developed) results. As a result, reliability of design could be improved.

Damping Device for Hydraulic Breaker: Impact and Noise Reduction (유압 브레이커 메인바디의 충격 및 소음 저감을 위한 완충 장치에 대한 연구)

  • Cho, Byung Jin;Han, Hoon Hee;Koo, Jeong Seo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.113-122
    • /
    • 2018
  • A hydraulic breaker is an attachment of an excavator, and it crushes stones. Recently, research to reduce the impact and noise of breakers are ongoing. In this paper, a method to improve the upper, lower, and side dampers, which act as insulation for the attenuation of vibration during breaker operation, is studied through testing and simulation. To obtain the nonlinear material constants required for the simulation, the biaxial tensile test was performed with urethane, which is a material used for dampers. The existing parts and the improved parts were compared and evaluated using the LS-DYNA program. As a result, 50% of the equivalent stress was reduced in the bracket body of the hydraulic breaker, and the equivalent stress of the side damper was also decreased. We verified that the fatigue conditions were satisfied by performing a fatigue analysis.

Experimental investigation on valve rattle noise of automotive electronic-wastegate turbochargers (차량용 전자식 웨이스트 게이트 터보차져의 밸브 떨림음에 대한 실험적 고찰)

  • Park, Hoil;Eom, Sangbong;Kim, Youngkang;Hwang, Junyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.686-686
    • /
    • 2013
  • Automotive turbochargers have become common in gasoline engines as well as diesel engines. They are excellent devices to effectively increase fuel efficiency and power of the engines, but they unfortunately cause several noise problems. The noises are classified into mechanical noises induced from movement of a rotating shaft and aerodynamic noises by air flow in turbochargers. In addition to, there is a mechanical noise caused from movement of an actuator, electronically controlling a wastegate valve. It is called as valve rattle noise. The actuator is connected to a valve through a linkage. The noise occurs only if the valve is open, where the linkage is freely contact to neighbor structures without being constrained by any external forces. This condition allows impacts by the pulsation of exhaust gas, and the vibration from the impacts spreads out through turbine housing, causing the rattle noise. The noise is not in mechanical operating wastegate turbochargers because the linkage of an actuator is strongly connected by actuating force. For the electronic wastegate turbocharger, this paper proposed a test device to show the noise generating mechanism with a small vibration motor having an unbalanced shaft. It also shows how to reduce the noise - reduction of linkage clearances, inserting wave washers into a connection, and applying loose fitting in bushing embracing a valve lever to turbine housing.

  • PDF

Study on Computational Simulation of a Metro Collision Accident and Improvement of Passive Safety (도시철도 충돌사고 시뮬레이션 및 충돌안전도 개선방안 연구)

  • Jung, Hyun Seung;Son, Seung Wan;Kwon, Tae Soo;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.885-892
    • /
    • 2015
  • In this study, we simulate the railway crash accident that occurred at the Sangwangsimni station on the Seoul Metro Line #2, and we propose a solution to minimize the damage. We use LS-DYNA, which is the commercial software employed for collision analysis to perform 1-D and 3-D simulations for the recurrence of accidents. By performing 1-D simulations, we analyze the load, displacement, absorbed energy of the couplers, and acceleration of vehicles, and we evaluate the safety in accidental collisions. By performing 3-D simulations, we analyze the deformation of the car and over-ridding. We propose methods to improve the safety in collisions involving railway vehicles, and we perform collision accident simulations to determine improvements when applying a high-performance energy absorber to the front car.

Optimal Design of Multi-Plate Clutch Featuring MR Fluid (MR 유체를 적용한 Multi-Plate Clutch의 최적설계)

  • Park, Jin-Young;Kim, Young-Choon;Oh, Jong-Seok;Jeon, Jae-Hoon;Jeong, Jun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2020
  • 4WD technology is being actively applied to passenger cars. Therefore, dry multi-plate clutches are used for transfer cases. On the other hand, dry clutches have problems related to large vibrations and poor ride quality. To solve this problem, this paper proposes a multi-plate clutch with an MR fluid. When fastening the multi-plate clutch in the transfer case, the proposed MR clutch was applied to reduce the shock and friction, which is a key component in a four-wheel-drive system. MR multi-plate clutch has a fluid coupling mode and a compression mode. A torque model equation was derived for the optimal design. The analysis was performed using Ansys Maxwell to optimize the design parameters of the multi-plate clutch. Electromagnetic field analysis confirmed the strength of the magnetic field when the number of disks and plates were changed, and the maximum strength of the magnetic field was 0.45 Tesla. By applying this to the torque equation, the spacing between the plates was 2 mm, and the inner and outer diameters of the plates were selected to be 45 mm and 55 mm, respectively. Overall, this paper proposes an optimal design technique to maximize the performance of an MR multi-plate clutch.

Study on the Safety of Playground Flooring Made of Polyolefin Foam Waste and Rubber Paving (폐폴리올레핀 폼과 탄성 포장재로 구성된 어린이 놀이터 바닥의 안전성에 관한 실험적 연구)

  • Choi, Soo-Kyung;Jun, Myoung-Hoon;Lee, Do-Heun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.246-254
    • /
    • 2013
  • This study is purposed to verify the safety of the floor of the children's playground using polyolefin foam waste and rubber paving. The critical fall height, walking suitability, long term physical fatigue expectation and slipperiness were tested. Polyolefin foam wastes in thickness of 30mm, 50mm and 70mm were prepared with paving the rubber paving materials in 12mm and 15mm thickness respectively. The test on the critical fall height was carried out according to KS G 5758:2009. The floor hardness test equipment (O-Y HMA) was used for the test on hardness of the floor from a viewpoint of walking suitability and fatigue. A portable slipperiness tester (ONO PPSM) was used for slipperiness test. It was revealed from the test that the floor made of the polyolefin foam waste and rubber paving were considerably safe from a viewpoint of impact absorption. With regards to the hardness of the floor, it was shown the excellent performance in the aspects of walking and fatigue for male. But it was not suitable with walking on the shoes(middle heels) for female. And they will be very fatigue if they were in a long time walking or standing. As far as the slipperiness is concerned, it was shown that it was comparatively safe for the ordinary motions even though the surface was wet.