• Title/Summary/Keyword: 충격받침대

Search Result 8, Processing Time 0.178 seconds

Morphological Characterization of Polysulfone Nonwoven Prepared by Electrospinning (전기방사한 폴리술폰 부직포의 형태학적 특성)

  • 차동일;정윤호;김학용;이덕래;김효대
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.381-383
    • /
    • 2002
  • 폴리술폰은 내화학성, 내멸균성, 내가수분해성, 내열성, 강인한 기계적 성질, 내충격성이 우수한 재료로 치수정밀도와 치수안정성이 매우 뛰어난 고분자이다 이런 뛰어난 특성으로 인해 필터 플레이트, 한외여과장치(기체 분리막), 전기ㆍ전자공업분야(전기콘센트소재), 의료용 분야(인공치골, 인공신장기용 박막, 고온에서의 멸균을 필요로 하는 수술용 받침대, 혈액투석용 필터 등) 등 여러 분야에서 이용되고 있다. (중략)

  • PDF

Low-velocity Impact Damage of a Thick Pressure vessel (복합재료 만든 두꺼운 압력용기의 저속충격에 관한 연구)

  • 김형원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.92-97
    • /
    • 2000
  • Low-velocity impact damage of a thick pressure vessel by composite materials was studied using the modified Herzian contact radius theory. Impactors of various masses and various tup shapes were dropped freely in the range of 20m to 200mm height. With acceleration gage and strain gage installed on the impactor, impact force and acceleration and Contact radius were measured. After a test, the samples were radiographed to scan the state of damage. Compared with hemispherical tup of 12.7mm diameter, the contact radius of hemispherical tup of 25.4mm diameter was bigger. And the experimental data and the theoretical data was different due to the mechanical properties difference. The acceleration value was changed linearly according to the height.

  • PDF

Structure-Fluid Interaction Analysis for the Submarine LOX Tank subjected to Underwater Explosion Impact (수중 폭발 충격을 받는 잠수함 액화 산소 탱크의 구조-유체 연성 해석)

  • Shin, Hyung-Cheol;Kim, Gyu-Sung;Kim, Jae-Hyun;Jeon, Jae-Hwang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.419-424
    • /
    • 2004
  • we performed the underwater explosion analysis for the liquefied oxygen tank - a kind of fuel tank of a mid-size submarine, and tried to verify the structural safety for this structure. First, we reviewed the theory and application of underwater explosion analysis using Structure-Fluid Interaction technique and its finite element modeling scheme. Next, we modeled the explosive and sea water as fluid elements, the LOX tank as structural elements and the interface between two regions as ALE scheme. The effect on shock pressure and impulse of fluid mesh size and shape are also investigated. As the analysis result, the shock pressure due explosion propagated into the water region and hit the structure region. The plastic deformation and the equivalent stress highly appeared at the web frame and the shock mount of LOX structure, but these values were acceptable for design criteria.

  • PDF

A Study on Prediction of Fatigue Life and Shock Fracture for the Engine Base of Auxiliary Power Unit for Tracked Vehicle (보조동력장치 엔진 Base의 피로수명 예측 및 충격파손에 관한 연구)

  • Lee, Sang-Bum;Chung, Kyung-Taek;Shin, Jae-Ho;Jang, Hwan-Young;Suh, Jeong-Se
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.86-92
    • /
    • 2008
  • This paper is to investigate the behavior of linear static structure stress, the fatigue and experimental shock fracture far engine base in the Auxiliary Power Unit to resolve its restricted electrical power problem. The shock fracture test was experimentally made under MIL standard criteria. The numerical results by finite element method had a good agreement with those from the shock test. The design data of predicting the fracture at the initial crack and the damage behavior of structure with shock and vibration load in the battle field can be obtained from shock test. In the functional shock test, the crack at the side parts of the engine base was found at peak acceleration of 40g.

A Study on the Finite Element Modeling and Analytical Parameters for the Dynamic Stiffness Evaluation of Shipboard Equipment Foundations (선박 장비 받침대의 동강성 평가를 위한 유한요소 모델링과 해석 인자에 관한 연구)

  • Kim, Kook-Hyun;Kim, Yun-Hwan;Choi, Tae-Muk;Choi, Sung-Won;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.808-812
    • /
    • 2010
  • This paper studies the finite element modeling and analytical parameters for the numerical evaluation of dynamic stiffness of large foundation for shipboard equipments such as marine diesel engine. For the purpose, numerical method and procedure to evaluate the dynamic stiffness are established based on the impact test method, which are applied for the dynamic stiffness evaluation of a real diesel generator foundation of ship. Numerical investigations compared with the measured data are carried out to evaluate the effects of modeling ranges of ship substructure, finite element sizes, lower support structures and damping coefficients. From the results, modeling and analytical parameters for proper evaluation of dynamic stiffness of large foundation of shipboard equipment are suggested.

Development of a Mock-up of Heaving Line Launcher to Support the Recovery of Unmanned Surface Vehicle (무인선 회수 지원을 위한 히빙라인 발사장치 목업 개발)

  • Kim, Yeon-Gyu;Kim, Sun-Young;Ryu, Gye-Hyoung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.73-74
    • /
    • 2015
  • In the world the interests about a unmanned surface vehicle(USV) are growing up. However it is difficult to launch and recover a USV because of no men on board of USV. And it is more difficult in recovery than launch of USV. So in this research the heaving line launcher was developed to support the recovery of USV easier. And a mock-up was manufactured to validate for adoption to the USV. The muck-up is composed of launcher pipe, remote trigger, air tank, tow shell and heaving line. Tests in land using the mock-up were carried out. The forces by the heaving line launcher to USV were measured by a measuring table during the tests in land. In this paper the development of a mock-up of heaving line launcher, tests in land and the measured forces during tests are presented.

  • PDF

A shock analysis of foundation by NASTRAN (NASTRAN을 이용한 탑재장비 받침대의 내충격 해석)

  • Kim, Kyung-Su;Kim, Jea-Hwan;Choi, Seung-Bok;Choi, Byung-Il
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.98-103
    • /
    • 2002
  • In this paper, shock analysis was performed for coarse and fine mesh model using MSC/NASTRAN and ANSYS after substituting the foundation of deck mounted equipment of marine ship for mass-spring system. In order to determine input file in MSC/NASTRAN, dynamic response analysis was also performed using DDAM based on the calculation in the range of low frequency. It was confirmed that the coarse mesh model has the sufficient effective weight in a lower degree mode compared to fine mesh model.

  • PDF

The Design of a Crutch as Mobility Aids for the Handicapped in the Lower Extremity (하지 장애인의 보행보조를 위한 목발 디자인 연구)

  • Yang, Sung Ho;Oh, Kwang Myung
    • Design Convergence Study
    • /
    • v.17 no.3
    • /
    • pp.55-70
    • /
    • 2018
  • This study was conducted as a part of long-term project on the development of a set of design guidelines for a crutch as mobility aids for the handicapped in the lower extremity and the suggestion a practical solution for a crutch design. The purpose of this study is to develop a design of a crutch and a set of prototypes that reflects the characteristics of crutch-gait and has a realistic possibility for mass production-based industry. TOGO, a axillary crutch as the result of this study, shows a number of characteristics distinguished from ordinary crutches. These are (1)Minimize the shock associated with planting of the crutch tips by improving the form and structure of crutch tip and axillary pad, (2)Ergonomically designed crutch in accordance with users' body movement while walking on crutches, (3)Easy length control to maximize mobility and maneuverability by changing the cross section of the crutch revolutionary, (4)Minimize possibilities of safety hazards, and (5)Attractive shape of the crutch to keep user self-esteem. The revolutionary crutch derived from this study results has been patented, and the company is seeking to mass-produce and find ways to commercialize it after reviewing the potential problems that may arise in the mass production environment.