• Title/Summary/Keyword: 출현패턴

Search Result 206, Processing Time 0.028 seconds

TFP tree-based Incremental Emerging Patterns Mining for Analysis of Safe and Non-safe Power Load Lines (Safe와 Non-safe 전력 부하 라인 분석을 위한 TFP트리 기반의 점진적 출현패턴 마이닝)

  • Lee, Jong-Bum;Piao, Ming Hao;Ryu, Keun-Ho
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • In this paper, for using emerging patterns to define and analyze the significant difference of safe and non-safe power load lines, and identify which line is potentially non-safe, we proposed an incremental TFP-tree algorithm for mining emerging patterns that can search efficiently within limitation of memory. Especially, the concept of pre-infrequent patterns pruning and use of two different minimum supports, made the algorithm possible to mine most emerging patterns and handle the problem of mining from incrementally increased, large size of data sets such as power consumption data.

Protein Disorder/Order Region Classification Using EPs-TFP Mining Method (EPs-TFP 마이닝 기법을 이용한 단백질 Disorder/Order 지역 분류)

  • Lee, Heon Gyu;Shin, Yong Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.6
    • /
    • pp.59-72
    • /
    • 2012
  • Since a protein displays its specific functions when disorder region of protein sequence transits to order region with provoking a biological reaction, the separation of disorder region and order region from the sequence data is urgently necessary for predicting three dimensional structure and characteristics of the protein. To classify the disorder and order region efficiently, this paper proposes a classification/prediction method using sequence data while acquiring a non-biased result on a specific characteristics of protein and improving the classification speed. The emerging patterns based EPs-TFP methods utilizes only the essential emerging pattern in which the redundant emerging patterns are removed. This classification method finds the sequence patterns of disorder region, such sequence patterns are frequently shown in disorder region but relatively not frequently in the order region. We expand P-tree and T-tree conceptualized TFP method into a classification/prediction method in order to improve the performance of the proposed algorithm. We used Disprot 4.9 and CASP 7 data to evaluate EPs-TFP technique, the results of order/disorder classification show sensitivity 73.6, specificity 69.51 and accuracy 74.2.

An Emerging Pattern Mining based Classification Method for Automated Prediction of Myocardial Ischemia ECG Signals (심근허혈 심전도 신호의 자동화된 예측을 위한 출현 패턴 마이닝 기반의 분류 방법)

  • Heon Gyu Lee;Ming Hao Park;Keun Ho Ryu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.19-22
    • /
    • 2008
  • 최근 서구화된 식생활 패턴과 흡연, 비만 등의 원인으로 인해 심근경색, 협심증과 같은 심근허혈(myocardial ischemia) 질환이 급증하고 있다. 이 논문에서는 심전도 신호로부터 허혈성 심장 질환 진단을 위해 출현 패턴 마이닝을 이용하여 심근경색 및 협심증의 진단 신호인 ischemia beat를 분류 하였다. 또한 기존의 출현 패턴 마이닝에 빠른 패턴 탐사와 저장 공간의 효율성을 고려하여 Apriori-T 빈발 패턴 탐사 알고리즘을 출현 패턴 생성이 가능하도록 확장하였다. PhysioNet의 ST-T 데이터베이스로부터 138개의 대조군(정상)과 ischemia beat 데이터에 제안된 분류 알고리즘을 실험한 결과 최소 75% 및 최대 95%의 예측 정확도를 보였다.

Improving Indexing Performance by using Occurrence Pattern Information of Proper Nouns (고유 명사 출현 패턴을 이용한 색인의 성능 향상에 관한 연구)

  • Jung, Rae-Jung;Kim, Jun-Tae
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.68-72
    • /
    • 1996
  • 본 논문에서는 고유 명사 출현 패턴 정보와 부가 정보를 이용한 미등록 고유 명사의 색인 방법을 제안한다. 정보 검색 시스템에서 고유 명사의 처리는 정확하고 의미 있는 색인을 위해 매우 중요하다. 본 논문은 형태소 분석 결과에 고유 명사 출현 패턴과 패턴 부가 정보를 사용하여 인명, 기관명, 회사명 등의 고유 명사 추출의 정확도를 높이는 방법을 제시한다. 총 827개의 인명과 기관 및 회사명을 포함하고 있는 조선일보 경제면 기사 100개 7416 어절에 대하여 본 시스템으로 실험한 결과, 인명의 경우 89%의 정확률을 보였다. 본 논문에서 제시한 출현 패턴과 고유 명사의 부가 정보를 적용했을 때 단순한 형태소 분석 결과에 비하여 고유 명사 추출 오류가 크게 개선되었다.

  • PDF

Multi-parametric Diagnosis Indexes and Emerging Pattern based Classification Technique for Diagnosing Cardiovascular Disease (심혈관계 질환 진단을 위한 복합 진단 지표와 출현 패턴 기반의 분류 기법)

  • Lee, Heon-Gyu;Noh, Ki-Yong;Ryu, Keun-Ho;Jung, Doo-Young
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.11-26
    • /
    • 2009
  • In order to diagnose cardiovascular disease, we proposed EP-based(emerging pattern- based) classification technique using multi-parametric diagnosis indexes. We analyzed linear/nonlinear features of HRV for three recumbent postures and extracted four diagnosis indexes from ST-segments to apply the multi-parametric diagnosis indexes. In this paper, classification model using essential emerging patterns for diagnosing disease was applied. This classification technique discovers disease patterns of patient group and these emerging patterns are frequent in patients with cardiovascular disease but are not frequent in the normal group. To evaluate proposed classification algorithm, 120 patients with AP (angina pectrois), 13 patients with ACS(acute coronary syndrome) and 128 normal people data were used. As a result of classification, when multi-parametric indexes were used, the percent accuracy in classifying three groups was turned out to be about 88.3%.

Design and Implementation of Frame Pattern Analyzer in Korean (한국어 문형 패턴 조사기의 설계 및 구현)

  • Song, Yusuck;Lee, Samuel Sangkon;Lee, In-Hong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.409-412
    • /
    • 2010
  • 본 논문에서는 한국어에서 출현하는 일반적인 형태의 문장 패턴을 조사하여 제2 외국어로서 한국어를 배우는 외국인들에게 우선적으로 가르쳐야 할 한국어의 문장 패턴을 검색하는 프로그램을 개발하였다. 이를 위해 지난 10년 동안 조사 구축된 21세기 세종 계획의 결과물에 출현하는 한국어에 적합한 문장 패턴을 조사하는 프로그램을 설계하였다.

Classification of Protein DISORDER/ORDER Region Using EP-tree Mining (EP-tree 마이닝을 이용한 단백질 DISORDER/ORDER 지역 분류)

  • Park, Hong-Kyu;Lee, Heon-Gyu;Li, Mei-Jing
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1274-1277
    • /
    • 2011
  • 단백질 1차 서열로부터 DISORDER와 ORDER지역을 예측하기 위해서 이 논문에서는 EP-tree에 기반한 출현패턴 발견 알고리즘을 제안하였다. EP-tree 알고리즘을 적용함으로서 기존의 단백질 특징 추출을 통한 방법과 달리 서열 자체에서 발견되는 출현패턴만을 이용하여 분류 모델을 생성하므로 기존의 신경망이나 SVM 보다 분류모델 생성 및 예측 속도가 빠르다. 또한 Disprot 4.9과 CASP7 테스트 데이터로 DISORDER/ORDER 지역을 예측한 결과, 73.4%의 높은 정확성을 보였다.

English Bible Text Visualization Using Word Clouds and Dynamic Graphics Technology (단어 구름과 동적 그래픽스 기법을 이용한 영어성경 텍스트 시각화)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.373-386
    • /
    • 2014
  • A word cloud is a visualization of word frequency in a given text. The importance of each word is shown in font size or color. This plot is useful for quickly perceiving the most prominent words and for locating a word alphabetically to determine its relative prominence. With dynamic graphics, we can find the changing pattern of prominent words and their frequencies according to the changing selection of chapters in a given text. We can define the word frequency matrix. In this matrix, rows are chapters in text and columns are ranks corresponding to word frequency about the words in the text. We can draw the word frequency matrix plot with this matrix. Dynamic graphic can indicate the changing pattern of the word frequency matrix according to the changing selection of the range of ranks of words. We execute an English Bible text visualization using word clouds and dynamic graphics technology.

Power Consumption Patterns Analysis Using Expectation-Maximization Clustering Algorithm and Emerging Pattern Mining (기대치-최대화 군집 알고리즘과 출현 패턴 마이닝을 이용한 전력 소비 패턴 분석)

  • Jin Hyoung Park;Heon Gyu Lee;Jin-Ho Shin;Keun Ho Ryu;Hiseok Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.261-264
    • /
    • 2008
  • 전력 회사의 효율적인 운용과 전력 시장에서의 경쟁을 위하여 고객의 전력 소비 패턴 분석 및 정확한 예측이 이루어져야 한다. 이를 위해서 이 논문에서는 원격 검침 시스템에 의한 전국의 고압 고객 데이터를 대상으로 고객의 전력 소비 패턴을 정확히 예측할 수 있는 마이닝 기법을 제안하였다. 먼저, 국내 계약종별 고객 특성에 맞는 부하 패턴의 정확한 구별을 위한 9가지의 특징 벡터를 추출하였고, 기대치-최대화 군집화 알고리즘을 사용하여 고객의 34개 대표 부하프로파일을 생성하였다. 마지막으로 추출된 특징 벡터로부터 각 대표 프로파일에 대한 출현 패턴 기반의 분류 모델을 구성하여 고객의 전력 소비 패턴을 분류하였다. 국내 원격 검침 시스템에 의해 측정된 총 3,895명의 고압 고객 데이터에 대한 실험 결과 약 91%의 분류 정확성을 보였다.

The Consolidation and Comparison Processes in Visual Working Memory Tested under Pattern-Backward Masking (역행 차폐를 통해 본 시각작업기억의 공고화 및 비교처리 과정)

  • Han, Ji-Eun;Hyun, Joo-Seok
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.4
    • /
    • pp.365-384
    • /
    • 2011
  • A recent study of visual working memory(VWM) under a change detection paradigm proposed an idea that the comparison process of VWM representations against incoming perceptual inputs can be performed more rapidly than the process of forming durable memory representations into VWM. To test this hypothesis, we compared the size of interference effect caused by pattern-backward masks following after either the sample(sample-mask condition) or test items (test-mask condition). In Experiment 1, subjects performed a color change detection task for four colored-boxes, and pattern masks with mask-onset asynchronies(MSOA) of either 64ms or 150ms followed each item location either after the sample or after the test items. The change detection accuracy was both comparable in the sample-mask condition regardless of the MSOAs, whereas the accuracy in the trials with a MSOA of 150ms was substantially higher than the MSOA of 65ms in the test-masking condition. In Experiment 2, we manipulated setsizes to 1, 2, 3, 4 items and also MSOAs to 117ms, 234ms, 350ms, 484ms and compared the pattern of interference across a variety of setsize and MSOA conditions. The sample-mask condition yielded a pattern of masking interference which became more evident as the setsize increases and as the MSOA was shorter. However, this pattern of interference was less apparent in the test-mask condition. These results indicate that the comparison process between remembered items in VWM and perceptual inputs is less vulnerable to interference from pattern-backward masking than VWM consolidation is, and thus support for the recent idea that the comparison process in VWM can be performed very fast and accurately.

  • PDF