• Title/Summary/Keyword: 출력오차방법

Search Result 367, Processing Time 0.024 seconds

A Study on Coating Film Thickness Measurement in vehicle Using Eddy Current Coil Sensor (와전류 코일 센서를 통한 차량용 코팅막 측정에 관한 연구)

  • Park, Hwa-Beom;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1131-1138
    • /
    • 2019
  • The importance of coatings has been increasing for different purposes such as prevention of static electricity of auto parts or products, improvement of abrasion and corrosion resistance, and enhancement of esthetics. As a method for measuring the thickness of a coating film, a contact method with probe is commonly used. However, it is problematic that accuracy of the sensor is degraded due to sensor output distortion or load phenomenon, which is caused by a change in magnetic permeability of the core. In this study, we propose a method to reduce the measurement error of the coating film by applying the optimized circuit design and the thickness measurement algorithm to the problems caused by the nonlinear characteristics. The tests result which have been taken with different thickness coating samples show that the measurement accuracy is within ${\pm}2%$.

Improvement of Initial Rotor Position Detection for Permanent-Magnet Synchronous Motor Using Magnetic Position Sensor (영구자석형 동기전동기에서 자기식 위치 센서를 사용한 초기 회전자 위치 검출 성능의 개선)

  • Park, Mun-Su;Yoon, Duck-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.398-404
    • /
    • 2021
  • This paper proposes a method of using a magnetic position sensor to detect accurately the rotor position required to perform vector control of a permanent-magnet synchronous motor, particularly the initial rotor position at startup. In the existing vector control systems, the initial rotor position was determined using the output signals of the Hall sensors, or the control was performed in a sensorless method without using such a sensor. On the other hand, the accuracy is degraded due to the occurrence of a position detection error, and the practicality was not satisfactory. This paper attempts to detect the initial rotor position using a magnetic position sensor to solve this problem. This method is used to solve the deteriorating starting characteristics of the motor in the vector control system. In addition, to lower the price of a low-power vector control inverter, this paper proposes a method of integrating the existing sensors and reducing the price to less than half using a magnetic position sensor for speed and position detection.

Analysis of the Impact on Prediction Models Based on Data Scaling and Data Splitting Methods - For Retaining Walls with Ground Anchors Installed (데이터 스케일링과 분할 방식에 따른 예측모델의 영향 분석 - 그라운드 앵커가 설치된 흙막이 벽체 대상)

  • Jun Woo Shin;Heui Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.639-655
    • /
    • 2023
  • Recently, there has been a growing demand for underground space, leading to the utilization of earth retaining walls for deep excavations. Earth retaining walls are structures that are susceptible to displacement, and their measurement and management are carried out in accordance with the standards established by the Ministry of Land, Infrastructure, and Transport. However, managing displacement through measurement can be considered similar to post-processing. Therefore, in this study, we not only predicted the horizontal displacement of a retaining wall with ground anchors installed using machine learning, but also analyzed the impact of the prediction model based on data scaling and data splitting methods while learning measurement data using machine learning. Custom splitting was the most suitable method for learning and outputting measurement data. Data scaling demonstrated excellent performance, with an error within 1 and an R-squared value of 0.77 when the anchor tensile force and water pressure were standardized. Additionally, it predicted a negative displacement compared to a model that without scaling.

Comparison and Analysis of Photon Beam Data for Hospitals in Korea and Data for Quality Assurance of Treatment Planning System (국내 의료기관들의 광자 빔 데이터의 비교 분석 및 치료계획 시스템 정도관리자료)

  • Lee, Re-Na;Cho, Byung-Chul;Kang, Sei-Kwon
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.179-186
    • /
    • 2006
  • Purpose: Photon beam data of linear accelerators in Korea are collected, analyzed, and a simple method for checking and verifying the dose calculations in a TPS are suggested. Materials and Methods: Photon beam data such as output calibration condition, output factor, wedge factor, percent depth dose, beam profile, and beam quality were collected from 26 institutions in Korea. In order to verify the accuracy of dose calculation, ten sample planning tests were peformed. These Include square, elongated, and blocked fields, wedge fields, off-axis dose calculation, SSD variation. The planned data were compared to that of manual calculations. Results: The average and standard deviation of photon beam quality for 6, 10, and 15 MV were $0.576{\pm}0.005,\;0.632{\pm}0.004,\;and\;0.647{\pm}0.006$, respectively. The output factors of 6 MV photon beam measured at depth of dose maximum for $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm\;were\;0.944{\pm}0.006,\;1.031{\pm}0.006,\;and\;1.055{\pm}0.007$. For 10 MV photon beam, the values were $0.935{\pm}0.006,\;1.031{\pm}0.007,\;1.054{\pm}0.0005$. The collected data were not enough to calculate average, the output factors for 15MV photon beam with field size of $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm\;were\;0.941{\pm}0.008,\;1.032{\pm}0.004,\;1.049{\pm}0.014$. There was seven institutions $e{\times}ceeding$ tolerance when monitor unit values calculated from treatment planning system and manually were compared. The measured average MU values for the machines calibrated at SAD setup were 3 MU and 5 MU higher than the machines calibrated at SSD for 6 MV and 10 MV, respectively except the wedge case. When the wedges were inserted, the MU values to deliver 100 cGy to 5 cm depends on manufactures. When the same wedge angle was used, Siemens machine requires more MUs then Varian machine. Conclusion: In this study, photon beam data are collected and analyzed to provide a baseline value for chocking beam data and the accuracy of dose calculation for a treatment planning system.

  • PDF

Inverse characterization method for color gamut extension in multi-color printer (색역 확장을 위한 멀티 칼라 프린터의 역 특성화 방법)

  • Jang, In-Su;Son, Chang-Hwan;Park, Tae-Yong;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.46-54
    • /
    • 2007
  • In current printer industry, four or more colorants are added for color gamut extension because the gamut of printer is smaller than other devices. However, these additional colorants make a redundancy problem that several combinations of colorants reproduced same color stimulus in colorimetric inverse characterization process. Thus, we propose a method of colorimetric inverse characterization using color correlation between colorant's amount. First, for analyzing the combination of colorants which represent the same color stimulus, we estimate the color stimulus for all combination of colorants by Cellular Yule-Nielsen Spectral Neugebauer printer model. The combination of colorants which has higher color correlation factor comparing combinations of colorant around itself in color space is selected. It can reduced the color difference from the tetrahedral interpolation process which is estimation of the output value(colorants combination) for arbitrary input(color stimulus). The selected combinations of colorants and their color stimulus are stored to the lookup table. In experiment, the CMYKGO printer was used. As a result, the dark region of color gamut was extended and the color tone was more naturally represented.

Fuzzy Inference System for Data Calibration of Gyroscope Free Inertial Navigation System (Gyroscope Free 관성 항법 장치의 데이터 보정을 위한 퍼지 추론 시스템)

  • Kim, Jae-Yong;Kim, Jung-Min;Woo, Seung-Beom;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.518-524
    • /
    • 2011
  • This paper presents a study on the calibration of accelerometer data in the gyroscope free inertial navigation system(GFINS) using fuzzy inference system(FIS). The conventional INS(inertial navigation system) which can measure yaw rate and linear velocity using inertial sensors as the gyroscope and accelerometer. However, the INS is difficult to design as small size and low power because it uses the gyroscope. To solve the problem, the GFINS which does not have the gyroscope have been studied actively. However, the GFINS has cumulative error problem still. Hence, this paper proposes Fuzzy-GFINS which can calibrate the data of an accelerometer using FIS consists of two inputs that are ratio between linear velocity of the autonomous ground vehicle(AGV) and the accelerometer and ratio between linear velocity of the encoders and the accelerometer. To evaluate the proposed Fuzzy-GFINS, we made the AGV with Mecanum wheels and applied the proposed Fuzzy-GFINS. In experimental result, we verified that the proposed method can calibrate effectively data of the accelerometer in the GFINS.

Disease Recognition on Medical Images Using Neural Network (신경회로망에 의한 의료영상 질환인식)

  • Lee, Jun-Haeng;Lee, Heung-Man;Kim, Tae-Sik;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • In this paper has proposed to the recognition of the disease on medical images using neural network. The neural network is constructed as three-layers of the input-layer, the hidden-layer and the output-layer. The training method applied for the recognition of disease region is adaptive error back-propagation. The low-frequency region analyzed by DWT are expressed by matrix. The coefficient-values of the characteristic polynomial applied are n+1. The normalized maximum value +1 and minimum value -1 in the range of tangent-sigmoid transfer function are applied to be use as the input vector of the neural network. To prove the validity of the proposed methods used in the experiment with a simulation experiment, the input medical image recognition rate the evaluation of areas of disease. As a result of the experiment, the characteristic polynomial coefficient of low-frequency area matrix, conversed to 4 level DWT, was proved to be optimum to be applied to the feature parameter. As for the number of training, it was marked fewest in 0.01 of learning coefficient and 0.95 of momentum, when the adaptive error back-propagation was learned by inputting standardized feature parameter into organized neural network. As to the training result when the learning coefficient was 0.01, and momentum was 0.95, it was 100% recognized in fifty-five times of the stomach image, fifty-five times of the chest image, forty-six times of the CT image, fifty-five times of ultrasonogram, and one hundred fifty-seven times of angiogram.

  • PDF

Development of Acoustic Positioning System for ROV using SBL System (SBL방식을 이용한 무인잠수정의 수중초음파 위치측정시스템 개발)

  • Yu, Son-Cheol;Byun, Seung-Woo;Kim, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.808-814
    • /
    • 2010
  • In this paper we executed a SBL(Short Baseline) underwater acoustic positioning system that is a kind of underwater position estimation system to estimates the 3-dimensional position of ROV(Remotely Operated Vehicle) using hydrophones and DAQ(Data Acquisition) system in the basin which dimensions are $3{\times}3{\times}1.7(m)$. For this experiment, we let 4 hydrophones in different positions of the basin for receiver and 1 hydrophone is fixed on the underwater vehicle for transmitting sensor(pinger). These five hydrophones are communicated with each other to find the 3-D positions of the moving ROV in the basin. The measured signals are collected by DAQ system and the positions of the ROV are plotted by LabView program in real-time. To estimate the position of the ROV we used a trigonometric method. In X and Y plane the estimated data has a small errors but in Z plane the estimated data has large errors so we cannot use this data for position control. One solution of this problem is using depth sensor that implemented of the underwater vehicle. Hereafter, we will test in the ocean using designed SBL system.

A Feasibility Study in Forestry Crane-Tip Control Based on Kinematics Model (1): The RR Manipulator (기구학적 모델 기반 임업용 크레인 팁 제어방안에 관한 연구(1): RR 매니퓰레이터)

  • Kim, Ki-Duck;Shin, Beom-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.287-301
    • /
    • 2022
  • This study aims to propose a crane-tip control method to intuitively control the end-effector vertically or horizontally for improving the crane work efficiency and to confirm the control performance. To verify the control performance based on experimental variables, a laboratory-scale crane was manufactured using an electric cylinder. Through a forward and reverse kinematics analysis, the crane was configured to output the position coordinates of the current crane-tip and the joint angle at each target point. Furthermore, a method of generating waypoints was used, and a dead band using lateral boundary offset (LBO) was set. Appropriate parameters were selected using bang-bang control, which confirmed that the number of waypoints and LBO radius were associated with positioning error, and the cylinder speed was related to the lead time. With increased number of waypoints and decreased LBO radius, the positioning error and the lead time also decreased as the cylinder speed decreased. Using the proportional control, when the cylinder velocity was changed at every control cycle, the lead time was greatly reduced; however, the actual control pattern was controlled by repeating over and undershoot in a large range. Therefore, proportional control was performed by additionally applying velocity gain that can relatively change the speed of each cylinder. Since the control performed with in a range of 10 mm, it was verified th at th e crane-tip control can be ach ieved with only th e proportional control to which the velocity gain was applied in a control cycle of 20 ms.

Automated Finite Element Analyses for Structural Integrated Systems (통합 구조 시스템의 유한요소해석 자동화)

  • Chongyul Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a few hundred or thousand steps. The algorithm's specifics are demonstrated through a standard cantilever beam example subjected to a concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples illustrate the adaptive algorithm's capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, the study highlights the potential for the scheme's effective application in complex structural dynamic problems, such as those subjected to seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and reliability of the proposed adaptive mesh generation scheme.