• Title/Summary/Keyword: 출구영역

Search Result 132, Processing Time 0.03 seconds

Study on Small Thruster Plume using Preconditioned Continuum Scheme and DSMC Method in Vaccum Area (희박영역에서 예조건화 연속체기법과 직접모사법을 이용한 소형 추력기 플룸 거동에 관한 연구)

  • Lee, Kyun-Ho;Lee, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.906-915
    • /
    • 2009
  • To study the plume effects in the vacuum area, the Direct Simulation Monte Carlo(DSMC) method is usually adopted because the plume field usually contains the entire range of flow regime from the near-continuum in the vicinity of nozzle exit through transitional state to free molecular at far field region from the nozzle. The objective of this study is to investigate the behaviors of a small monopropellant thruster plume in the vacuum area numerically using DSMC method. To deduce accurate results efficiently, the preconditioned scheme is introduced to calculate continuum flow fields inside thruster to predict nozzle exit properties used for inlet conditions of DSMC method. By combining these two methods, the vacuum flow characteristics of plume such as strong nonequilibrium near nozzle exit, large back flow area, etc, can be investigated.

Study on the Thruster Plume Behaviors using Preconditioned Scheme and DSMC Method (예조건화 기법과 직접모사법을 이용한 추력기 플룸 거동에 관한 연구)

  • Lee, Kyun-Ho;Kim, Su-Kyum;Yu, Myoung-Jong
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.144-153
    • /
    • 2009
  • To study the plume effects in the rarefied region, the Direct Simulation Monte Carlo(DSMC) method is usually adopted because the plume field usually contains the entire range of flow regime from the near-continuum in the vicinity of nozzle exit through transitional state to free molecular at far field region from the nozzle. The objective of this study is to investigate the behaviors of a small monopropellant thruster plume in the rarefied region numerically using DSMC method. To deduce accurate results efficiently, the preconditioned scheme is introduced to calculate continuum flow fields inside thruster to predict nozzle exit properties used for inlet conditions of DSMC method. By combining these two methods, the rarefied flow characteristics of plume such as strong nonequilibrium near nozzle exit, large back flow region, etc, can be investigated.

  • PDF

Flow Characteristics of Turbulent Flow in the Exit Region of Join Stream Curved Duct (합류 곡관덕트 출구영역에서 난류유동의 유동특성)

  • Sohn, Hyun-Chull;Park, Sang-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.569-578
    • /
    • 2003
  • In the present steady the flow characteristics of turbulent steady flows were experimentally investigated in the exit region of join stream. The experimental was carry out to measure the velocity profiles of air in a square duct. For the measurement of velocity profiles, a hot-wire anemometer was used. The experimental results shows that the velocity profiles do not change behind the fully developed flow region , which is defined as dimensionless axial direction x/Dh=50. In addition, the gradient of shear stress distribution became stable as the flow reached progress downstream.

A Study on the Flow Characteristics in a Torque Converter (토크 컨버터 유동특성에 대한 연구)

  • Yoo, S.C.;Jang, S.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.20-26
    • /
    • 2008
  • 양산되는 승용차용 토크 컨버터 내부의 유동을 LDV 측정 기술을 이용하여 정량화했다. 속도비 0.4와 0.8 경우에 대한 속도 측정을 통해 임펠러 유로 중간과 출구 영역의 질량 유동율 특성을 분석했다. 측정 단면의 속도 분포는 유로의 위치와 속도비에 따라 많은 차이를 보이며, 특히 속도비 0.8 조건에서 임펠러 유로 중간영역 흡입면 부근의 유동은 유동박리에 의한 재순환 현상을 나타내며, 이와는 대조적으로 출구 영역에서는 흡입면을 따라 역류 현상이 발생한다. 임펠러 유로 내부의 유동은 각 영역에서 속도비에 따라 개별적 유동 특성을 보인다. 질량 유동율은 모든 속도비와 측정단면에서 주기적인 변화를 보이며, 또한 터빈의 순간적인 위치가 임펠러 유로 측정단면의 질랑 유동율에 매우 큰 영향을 미치는 것이 밝혀졌다 따라서 토크 컨버터 임펠러의 유로 방향 유동 특성 변화는 컨버터 설계에 중요하게 고려되어야 할 것으로 보인다.

  • PDF

A Numerical Study of the 3-D Flow in the Primary Calcinator of Porcelain (도자기 1차 소성로의 3차원 유동장 수치해석에 관한 연구)

  • 김성수;홍성선;박지영;오창섭
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 1996
  • A numerical simulation on a primary calcinator of porcelain was performed with using Fluent to calculate the heat efficiency by studying velocity vector and temperature profile according to variables such as the location of outlet and porcelain. Control-Volume based Finite Difference Method and Up-wind scheme are used for discretization of differential equation. SIMPLEC Algorithm and standard k-$\varepsilon$ turbulent model are selected to resolve the pressure-velocity coupling and the turbulent. The result of simulation showed that the whole velocity vector field in a calcinator was varied greatly according to the location of outlet. But the whole temperature profile at each zone was still high regardless of the location of outlet because of the radiation. But the temperature of a case with a outlet at sidepart of preheating or cooling zone was little high compared to the case with a outlet on the top of preheating zone. The velocity vector field and temperature profile in a calcinator were almost not affected by the location of porcelain, but the temperature inside a porcelain was much affected according to the place where it was located. The heat efficiency in a calcinator was 44.6% and the gas temperature in the outlet was about 1000 K.

  • PDF

The Comparison on Resistance Performance and Running Attitude of Asymmetric Catamaran Changing Angle of Inclination of Tunnel Stern Exit Region (비대칭 고속 쌍동선의 선미터널 출구영역의 경사각 변화에 따른 저항성능 및 항주자세 분석)

  • Kim, Sang-Won;Seo, Kwang-Cheol;Cho, Dea-Hwan;Kim, Byung-Jae;Lee, Gyeong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.232-233
    • /
    • 2017
  • In this research, tunnel stern was applied on the asymmetric high-speed catamaran to evaluate vessel's hydrodynamic performance by numerical method, and the tunnel stern types are distinguished by angle of inclination of tunnel exit region into 3cases ($0^{\circ}$, $3^{\circ}$ and $6^{\circ}$). Consequently, it is confirmed that the total resistances of tunnel stern which have $0^{\circ}$ of inclination are lower about 4.8-17.9% than the bare hull in the wide speed range, but those of $3^{\circ}$ and $6^{\circ}$ of inclination tunnel stern are higher than bare hull about 5-14% and 5-29%, respectively. On the other hand, trim angles of $0^{\circ}$ of inclination tunnel stern show similar trend with those of bare hull in whole ranges of FnV but those of $3^{\circ}$ and $6^{\circ}$ of inclination tunnel stern are stabilized and declined respectively after FnV=1.54. These phenomena indicated that increasing angle of inclination of tunnel exit region had negative influence on resistance performance, however, it could make vessel's operation performance better than bare hull.

  • PDF

The Study on The Heat Transfer Enhancement Using Wire Mesh in Impinging Jet System (충돌분류계에서 WIRE MESH를 이용한 열전달 증진에 관한 연구)

  • Kum, S.M.;Kim, D.C.;Yoo, J.O.;Lee, C.E.;Yim, C.S.
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The objective of this research was to investigate the enhancement of heat transfer by wire mesh in impinging air jet system at the potential core region. The first experiment was carried out without mesh between nozzle exit and flat plate and the second experiment was done with mesh between them. When mesh was installed in front of the plate, heat transfer has been Increased due to the acceleration between rectangular halls and divided small jet In case clearances are changed, heat transfer comes to maximum under the condition of C=1mm, irrespective of nozzle exit velocity and H/B. Also the average heat transfer enhancement rate of a flat plate with mesh has been increased about 44% at maximum under the condition of U=18m/s, H/B=2 and C=1mm, compared to the result of a flat plate without mesh.

  • PDF

An Analysis of Flow and Noise for Vacuum Cleaner Centrifugal Fan (진공청소기 원심팬의 유동과 소음 해석)

  • 전완호;이덕주;유기완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.130-135
    • /
    • 1995
  • 본 연구에서는 30000rpm으로 회전하는 진공청소기 원심팬의 유동장을 임펠러, 디퓨저, 케이싱을 모두 고려하여 해석하였다. 또한 삼차원으로 배출되는 출구를 간단한 sink 패널로 모델하여 출구의 효과를 충분히 고려하였다. 해석된 유동장 자료를 이용하여 먼 거리에서의 음압을 예측하였다. 예측된 음압자료는 FFT를 이용하여 측정된 값과 주파수 영역에서 비교하였다. 또한 진공청소기 원심팬의 측정자료에서 보이는 광역소음특성이 임펠러에서 흘려지는 후류와류의 교란에 의한 임펠러와 디퓨저 깃의 비정상 힘이 주된 원인임을 밝혔다.

  • PDF

Analysis of Relative Contributions of Tonal Noise Sources in Volute Tongue Region of a Centrifugal Fan (원심팬 볼루트 영역내 순음 소음원의 상대적 기여도 분석)

  • Heo, Seung;Kim, Daehwan;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Interaction between the unsteady flow emitted from the blade of the centrifugal fan and the volute tongue region of fan duct is known as the main noise source of the centrifugal fan. In this paper, the relative contributions of the volute tongue region of the centrifugal fan is analyzed to utilize as the foundation data of low noise design. The internal hybrid CAA (Computational Aero-Acoustics) method is used to predict noise radiated from the main noise source. This method is the noise prediction technique using CFD (Computational Fluid Dynamics), Acoustic analogy, and BEM(Boundary Element Method). The relative contributions of the centrifugal fan volute tongue region using the hybrid CAA method show that the region between the cut-off and the scroll has high contribution than the region between the cut-off and the outlet and the hub region of blade has high contribution than the shroud region of blade. These results is utilized as the important data for the development of low noise centrifugal fan.

2차원 및 3차원 액체 램제트 엔진의 내부 유동 해석

  • 손창현;오대환;이충원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.11-11
    • /
    • 1998
  • 최적의 액체 램제트 연소기 설계를 위하여 흡입공기와 분무, 혼합 그리고 이에 따른 연소의 일련의 과정이 일어나는 램제트 연소기의 유동해석을 2차원 및 3차원으로 수행하였다. 격자구성은 연소기에 공기를 공급하고 연료를 분무하는 공기 유입관 영역과 연소실 및 노즐 영역, 그리고 출구 대기 영역으로 나누어 독자적으로 격자를 생성시켰다. 연소실 내의 유동 특성에 있어서 2차원과 3차원의 유동해석 결과는 선회영역 유동특성이 크게 차이가 남을 알 수 있었다. 따라서 실제 액체 램제트 연소기의 설계를 위해서는 3차원 유동해석과 실험이 반드시 필요하다.

  • PDF