• Title/Summary/Keyword: 축열체

Search Result 41, Processing Time 0.034 seconds

A Study on the Heat Accumulation Performance of Ceramic Honeycomb located on the Flat Burner (Flat Burner 위에 설치된 Ceramic Honeycomb의 축열성능 연구)

  • Park, Jae-Min;Heo, Su-Bin;Yoon, Bong-Seock;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.244-249
    • /
    • 2012
  • Recently energy crisis and environmental pollution using fossil fuel became social issue. The Fuel Cell, one of the new and renewable energy has great advantage for the former mentioned problems. The PEM Fuel Cell needs highly purified hydrogen for fuel, in many cases CH4 was reformed to H2 basically using steam reforming. The purpose of this paper is to understand the probability of ceramic honeycomb to apply the combustor of STR. We tested the heat accumulation performance of ceramic honeycomb by change of excess air ratio. The results were suitable for our purpose and also these results can be used to make high temperature air at mild combustion field.

Development of Phase Change Thermal Energy Storage System (상변화물질을 이용한 고효율 축열시스템 개발)

  • 장진택;유영선;윤진하;김영중;강금춘
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.91-94
    • /
    • 1999
  • 1. 가열과정과 냉각과정의 열매체 입출구 온도차는 초기에 6$^{\circ}C$이상이었으나 후기의 온도차는 3$^{\circ}C$정도로 나타났으며, 가열과정 중 상변화가 이루어지는 시간은 약 2시간, 3$0^{\circ}C$에서 상변화과정이 이루어지며, 냉각과정은 3$0^{\circ}C$에서 1차 28$^{\circ}C$에서 2차 상변화과정이 진행되는 것으로 나타났으나 30-28$^{\circ}C$에서 계속적인 상변화과정이 나타났으며 진행시간은 약 3시간으로 나타났다. 2. 축열재를 700kg 주입하여 축열성능과 방열성능을 측정한 결과 축열재의 축열량은 37,818㎉, 방열량은 36,228㎉로 나타났다. 이상의 결과로 볼 때 축열시스템의 효율은 95.8%로 나타났다.

  • PDF

Design and Performance Estimation of Heat Regenerator for Small-scale Regenerative Radiant Tube Burner (열처리로용 소형 축열식 복사관 버너의 축열기 설계 기술평가)

  • Cho H. C.;Cho K. W.;Lee Y. K.
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.291-295
    • /
    • 2004
  • Heat regenerator attached in small-scale regenerative radiant tube burner was designed using the theoretical computation code and was confirmed the performance of waste heat recovery ratio. From the computation, when ceramic ball of 4-5kg was used, temperature efficiency and available waste heat recovery ratio were predicted 80% and 70%, respectively. Similar efficiencies were obtained from the experiments using LPG. However, since exhaust gas temperature entered into regenerator was below 850$^{\circ}C$ which was moth lower than that we expected. air preheating temperature was lowered below 800$^{\circ}C$.

Thermal Efficiency Analysis of the Conical Solar Concentrator According to the Black Coating of Absorber (흡수기 도색 여부에 따른 원추형 집광기 집열효율 분석)

  • Hwang, Seong Geun;Na, Mun Soo;Woo, Sung Jae;Lee, Joo Hee;Lee, Gwi Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.125-125
    • /
    • 2017
  • 본 연구에서 원추형 태양열 집광기의 흡수관 표면의 흑색 도색 여부에 따른 효율분석을 수행하였다. 원추형 집광기 시스템은 열 손실 최소화 및 집광비가 우수한 $45^{\circ}$의 원추각을 갖는 원추형 집광기를 설계 및 제작하였다. 원추형 태양열 집광시스템은 열매체 축열을 위한 온도센서가 내장된 축열조와 태양에너지를 집열시키는 원추형 집광기, 유량측정을 위한 유량계, 열매체의 강제순환을 위한 펌프로 구성되어있다. 또한 지속적인 태양추적을 위해 2축 태양 추적 장치를 설치하였다. 흡수관은 원추형 집광기의 중심부에 설비되었으며, 열매체의 순환을 위해 이중 열교환기 구조로 제작되었다. 흡수관의 길이는 열 손실을 최소화하기 위하여 집광기의 높이와 동일하게 설계하였다. 원추형 집광시스템의 작동유체인 물은 펌프에 의해 흡수관과 축열조를 강제순환 하게되고, 용량이 70L인 축열조에 흡수관으로부터 흡수된 태양 복사열이 저장된다. 원추형 집광시스템의 성능실험은 청명한 날 유량 2L/min, 4L/min, 6L/min에 대해 수행되었으며, 집열효율을 계산하여 비교 및 분석하였다. 흑색으로 도색된 흡수기를 부착한 원추형 집광시스템의 집열효율은 82.25%로 나타났으며, 무 도색 흡수관을 갖는 원추형 집광시스템은 73.26%의 집열효율을 나타내었다. 따라서 본 연구를 통해 흡수관 표면의 흑색 도색이 원추형 집광시스템의 집열효율에 큰 영향을 미친다는 것을 알 수 있었다.

  • PDF

Prediction of Performance in heat regenerator with spheres (구형축열체를 이용한 축열기의 성능예측)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF

Study on Heat Storage and Transportation System for Recovering Non-using Low-temperature Heat (폐열회수 증대를 위한 열운송 축열 시스템 특성 연구)

  • Oh, Changyong;Im, Hongseop;Kim, Insu
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.29-35
    • /
    • 2014
  • Non-used waste heat has recently been paid special attention due to several global warming regulation and energy cost rising. In this study, therefore, thermal energy storage system which uses a solid type heat media has been investigated about the possibility of heat accumulation and heat release for thermal energy storage system. 35kWh of bench-scale thermal storage system was used to investigate the characteristics of the solid type heat media. From the result, it is shown that a solid type heat media should be divided to supply constant heat to the customers' side. It is also shown the flow direction should be considered to reduce temperature difference between top and bottom sides in the thermal storage system.

Solar Steam Reforming of Methane utilizing Solar Simulator (Solar Simulator를 이용한 메탄의 수증기 개질 반응)

  • Do, Han-Bin;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.186-189
    • /
    • 2008
  • Solar simulator를 이용한 메탄의 수증기 개질은 집광된 태양에너지를 이용하기 위한 목적으로 수행되었다. 본 연구에서는 이와 같은 태양열에너지의 화학적 축열을 실시하기 위해 Solar Simulator를 이용한 메탄의 수증기 개질을 연구하였다. 태양열 모사 램프로 1.2kW급 Xenon-arc lamp를 사용하였다. 반응기는 앞면의 Quartz Window와 촉매지지층으로 구성되어 있다. 램프의 빛은 Quartz Window를 통하여 촉매층에 직접적으로 방사되고, 방사된 빛으로 촉매지지층에서 흡열반응이 일어난다.메탄의 수증기개질 반응은 고온에서 일어나기 때문에 촉매지지체를 열에 강한 SiC로 만들어진 Ceramic foam을 사용하였다. 이 촉매지지체에 촉매를 Wash-coat하여 사용하였으며, 담지된 촉매는 Ni을 활성성분으로 하는 ICI 46-6을 사용하였다. 반응기는 318 SUS 재질로 제작되었으며, 반응기 외부는 Insulation을 하여 열손실을 감소시켰다. 실험은 온도와 공간속도에 따른 Solar Steam reforming의 반응특성을 분석하였다.

  • PDF

Property Change of Heat-reservoir Refractory Brick With Varying Compositions and Sintering Conditions Utilizing Mill-scale and Red-firing Clay As Raw Materials (밀스케일과 적점토를 원료로한 축열재에서 원료성분과 소성조선에 따른 특성 변화)

  • Kim, Jeong-Seog;Kim, Hong
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.23-28
    • /
    • 1999
  • Firing characteristics, transverse rupture strength, and heat capacity were studied of the heat-reservoir refractory materials made of red-firing clay, mill scale, and water glass. The firing shrinkage increased with increase of the clay proportion in samples. The volume of fired bodies showed shrinkage by drying up to $300^{\circ}C$, steady expansion in the 300-$700^{\circ}C$ range due to phase transition of iron oxides. and drastic expansion above $1200^{\circ}C$. Flexural strength decreased from 5.6 Mpa to 2.35 Mpa with the decrease of the ratio of clay to mill scale from 1:1 to 1:3 Heat capacities changed from 1.1 Joul/g$^{\circ}$C to 1.35 Joul/g$^{\circ}$C with the ratio of millscale to clay ratio from 1:1 to 1:3. Mill scale in the specimen appears to exist as liquid phase during firing. Firing the specimens in air leads to the eruption of the molten mill scale to the sample surfaces. Contrarily, firing samples in a refractory sagger with a cover suppressed the eruption of the molten mill scale to the surfaces. The addition of mill scale gave rise to porous sintered bodies which would delay cooling rates of heat-reservoir brick.

  • PDF

A Study on the Heat Storage Utilizing Phase Change of Salt Hydrates in Vertical Piped-Storage System (수직관형(垂直管形) 축열조(蓄熱槽)에서의 수화염류(水化塩類)의 상변화(相変化)를 이용(利用)한 열저장(熱貯藏)에 관(関) 연구(硏究))

  • Yon, Kwang Seok;Cha, Gyun Do
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.74-80
    • /
    • 1984
  • Storage materials for a minimized storage system should be able to store much energy in small quantities, and to solve such a problem, salt hydrates such as CALCIUM CHLORIDE, SODIUM SULFATE, SODIUM PHOSPHATE etc. were considered as most suitable storage media in which phase change phenomena take place at low temperature. Therefore those salt hydrates were used as storage media in this study, and piped-storage tanks were manufactured vertically for the experiment. The characteristics of thermal storage media were investigated and the results are summarized as follows: 1. From the experiment of radial temperature distribution of vertical piped-storage system, the latent heat phenomenon did not occur in all storage media during heating process because of generations of heat due to the reduction in the number of water molecules. However, among those storage media CALCIUM CHLORIDE had most remarkable latent heat phenomenon during cooling process. Therefore CALCIUM CHLORIDE was considered as most suitable storage media. 2. Heat quantity transferred to the storage media was the largest in case of CALCIUM CHOLORIDE under the same conditions during heating and cooling process.

  • PDF

Comparison of Annual Heating and Cooling Loads of Internally and Externally Insulated Apartment Buildings According to the Location of Thermal Mass (내, 외단열 공동주택의 축열체 위치 차이에 따른 동단위 연간 냉난방부하 비교평가)

  • Koo, Bo-Kyoung;Lee, Beung-In;Choi, Doo-Sung;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.42-49
    • /
    • 2010
  • The IIS(Internal Insulation System) is applied in most Korean apartment buildings which are the most common type of residential buildings. Consequently, there are many cases in which the layer of insulation is disconnected by the structural components at the wall-slab and wall-wall joints in the envelope. These joints become thermal bridges where the risk of heat loss increases. It is expected that the EIFS(External Insulation and Finish System) is the solution to this problem. In this study, annual heating and cooling loads of apartment buildings with IIS and EIFS were compared using Design Builder program in order to evaluate the thermal storage effect of EIFS where the concrete thermal mass is located inside of the insulation material. As results, the apartment building with EIFS could reduce annual heating and cooling loads by 2.4% and 4.1%, respectively.