• Title/Summary/Keyword: 축압축 실험

Search Result 193, Processing Time 0.024 seconds

Fundamental Properties on the Development of High Performance Shrinkage Reducing Agent for Concrete (콘크리트용 고성능 수축저감제 개발에 대한 기초적 특성)

  • Park, Jong-Pil;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4298-4307
    • /
    • 2015
  • The expenses of maintenance and reinforcement for aged concrete structures are significantly on the increase as their durability and general performance has been naturally degraded. Due to this reason, interests on concrete crack reduction technology are growing but more researches are required to fulfill such fast growing demands. Particularly in the underground power facilities, it is difficult to maintain the quality of aging concrete spheres for underground power as their deterioration caused by long-term operation is on-going. In recent years, many studies have been made to overcome the issues and now it is determined that the shrinkage reducing technology which can dramatically reduce the crack at the design stage is one of the most effective solutions. In this study, the test investigated fundamental propertiesof concrete using various shrinkage reducing materials to develop low shrinkage mortar. According to results of experimental study, for mortar and concrete, glycol based material showed excellent shrinkage property and compressive strength. For the later study to generic application of the shrinkage reducing materials, performance reviews on the shrinkage reducing materials with variable factors and various materials such as changes in the amount and type of materials should be followed.

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

R&D Review on the Gap Fill of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭채움재 기술현황)

  • Lee, Jae Owan;Choi, Young-Chul;Kim, Jin-Seop;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.405-417
    • /
    • 2014
  • In a high-level waste repository, the gap fill of the engineered barrier is an important component that influences the performance of the buffer and backfill. This paper reviewed the overseas status of R&D on the gap fill used engineered barriers, through which the concept of the gap fill, manufacturing techniques, pellet-molding characteristics, and emplacement techniques were summarized. The concept of a gap fill differs for each country depending on its disposal type and concept. Bentonite has been considered a major material of a gap fill, and clay as an inert filler. Gap fill was used in the form of pellets, granules, or a pellet-granule blend. Pellets are manufactured through one of the following techniques: static compaction, roller compression, or extrusion-cutting. Among these techniques, countries have focused on developing advanced technologies of roller compression and extrusion-cutting techniques for industrial pellet production. The dry density and integrity of the pellet are sensitive to water content, constituent material, manufacturing technique, and pellet size, and are less sensitive to the pressure applied during the manufacturing. For the emplacement of the gap fill, pouring, pouring and tamping, and pouring with vibration techniques were used in the buffer gap of the vertical deposition hole; blowing through the use of shotcrete technology and auger placement and compaction techniques have been used in the gap of horizontal deposition hole and tunnel. However, these emplacement techniques are still technically at the beginning stage, and thus additional research and development are expected to be needed.

Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear (순수전단이 작용하는 RC막판넬의 전단변형률 증폭)

  • Jeong, Je Pyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.101-110
    • /
    • 2015
  • Recently, nine $1397{\times}1397{\times}178mm$ RC panels were tested under in-plane pure-shear monotonic loading condition using the Panel Element Tester by Hsu (1997, ACI). By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, Modern Truss Model (MCFT, RA-STM) are capable of producing the nonlinear analysis of RC membrane panel through the complicated trial-and-error method with double loop. In this paper, an efficient algorithm with one loop is proposed for the refined Mohr compatibility Method based on the strut-tie failure criteria. This algorithm can be speedy calculated to analyze the shear history of RC membrane element using the results of Hsu test. The results indicate that the response of shear deformation energy at Big Bang of shear strain significantly influenced by the principal compressive stress-strain (crushing failure).

A Simple Formula for Ultimate Strength Prediction of Hull Girders (선각거더의 최종강도 간이계산식)

  • J.K. Paik;A.E. Mansour
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.83-97
    • /
    • 1995
  • The aim of this study is to derive a simple formula for predicting ultimate strength of hull girders under vertical bending moment. The existing formulas have been reviewed and classified into analytical approach, empirical approach and linear approximate approach. It is known that the ship hull will reach the ultimate limit state if both collapse of the compression flange and yielding of the tension flange occur. Side shells in the vicinity of the compression and tension flanges will often fail also, but the material around the final neutral axis will remain in the elastic state. Based on this observation, a credible distribution of longitudinal stresses around the hull section at the overall collapse state is assumed, and an explicit analytical formula is derived. The accuracy of the formula has been verified by a comparison of the experimental and the numerical results.

  • PDF

Modified Modulus of Elasticity of Concrete Column with Steel Bars (철근을 고려한 콘크리트 기둥의 수정탄성계수)

  • Yoon, Dong-Yong;Song, Hyung-Soo;Jang, Won-Seok;Min, Chang-Shik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.101-111
    • /
    • 2005
  • In this study, it is investigated the modified modulus of elasticity of the reinforced concrete columns including the longitudinal reinforcing steels as well as the confinement effect of the core concrete due to the transverse reinforced steel through the literature reviews. Equations are derived in order to evaluate the modified modulus of elasticity for the reinforced compressive concrete including the confinement effect. The finite element analysis for the 20 story reinforced concrete building is undertaken as a case study depending on the steel ratio and modulus of elasticity, and the analysis results are discussed.

Pseudo-Static Behaviors of U-shaped PSC Girder with Wide Flanges (확폭플랜지를 갖는 U형 프리스트레스 거더의 유사정적거동)

  • Rhee, In-Kyu;Lee, Joo-Beom;Kim, Lee-Hyeon;Park, Joo-Nam;Kwak, Jong-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.993-999
    • /
    • 2008
  • A girder height limitation is the critical parameter for rapid construction of bridge deck and construction space limitation especially in urban area such as high population area and high density habitats. A standard post-tensioned I-shaped concrete girder usually demands relatively higher girder height in order to retain sufficient moment arm between compression force and tensile force. To elaborate this issue, a small U-shaped section with wide flanges can be used as a possible replacement of I-shaped standard girder. This prestressed concrete box girder allows more flexible girder height adjustment rather than standard I-shaped post-tensioned girder plus additional torsion resistance benefits of closed section. A 30m-long, 1.7m-high and 3.63m-wide actual small prestressed concrete box girder is designed and a laboratory test for its static behaviors by applying 6,200kN amount of load in the form of 4-point bending test was performed. The load-deflection curve and crack patterns at different loading stage are recorded. In addition, to extracting the dynamic characteristics such as natural frequency and damping ratio of this girder, several excitation tests with artificial mechanical exciter with un-symmetric mass are carried out using operational frequency sweep-up. Nonlinear finite element analysis of this 4 point bending test under monotonic static load is investigated and discussed with aids of concrete damaged plasticity formulation using ABAQUS program.

  • PDF

Long-Term Behavior of CFT Column under Central Axial Load (중심축 하중을 받는 CFT 기둥의 장기거동에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2001
  • Concrete filled steel tubular (CFT) columns are becoming popular in structural applications. The increased popularity comes from their excellent structural properties such as high strength, high ductility, and large energy absorption capacity. However, the disadvantage feature of CFT column is the difficulty in predicting its time dependant characteristic (i.e., creep and shrinkage) of inner concrete. The time dependent behavior of CFT column can cause serious serviceability problems. Therefore, it is necessary to investigate the long term behavior of CFT column. This paper presents analytical and experimental studies on long-term behavior of CFT-column under a central axial loading. Two loading cases are considered in the research; (1) the load applied only at the inner core concrete of CFT-column and (2) the load applied simultaneously on both concrete and steel tube. Analysis method using the bond strength model is proposed and conclusions on long-term properties of CFT-column can be derived from the results.

Experimental Study on the Axial Crushing Behavior of Truncated Cone Type Brake Device (콘 형상 제동장치의 축방향 압축변형에 대한 실험적 연구)

  • Kim, Ji-Chul;Lee, Hak-Yeol;Kim, Il-Soo;Shim, Woo-Jeon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.169-176
    • /
    • 2002
  • Axial crushing behavior of cylindrical shell Is utilized in the braking of the high-velocity impacting object. In this paper, truncated cone shape brake device is introduced. That is, thickness of the shell is increased gradually from the impacting end to the other end. A detailed experimental investigation on the quasi-static axial crushing behavior of truncated cone type brake devices has been performed. Specimens of various shape were tested to check the influence of design parameters such as length, radius, mean thickness, and conical angle of cylinder. Influence of the material properties were also investigated by adopting aluminum, low carbon steel, and stainless steel as constructing materials. By analyzing deformation procedures of the specimens, it is seen that conical angle influence the deformation mode and the sequence of the wrinkles generation. Braking distance and mean braking force of each specimen were predicted based on the crushing load measured from the tests.

  • PDF

An Experimental Study on the Characteristics of Temperature Distribution in Internal Space of a Tube for the Formal Change of Counterflow Type Vortex Tube (대향류형 보텍스 튜브의 노즐형상 변화011 따른 튜브 내부의 온도분포에 관한 실험적 연구)

  • 황승식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.69-76
    • /
    • 2002
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial and the radial temperature distribution in internal spare of a tube. From the study, fellowing conclusive remarks 7an be made. First, As the number of nozzles increase, separation point move into the hot exit. Second, When we use guide vane type nozzle, the axial temperature distribution constant over the 0.75 of air mass flow rate radio. Third, When we use Spiral type nozzle, axial and radial temperature distribution in the inner space is higher than another nozzle. Fourth, Axial and radial temperature distribution in the inner space vortex-tube is determined by separation point. And separation point is moved by changing of air mass flow rate ratio. At last, A heating apparatus is possible far vortex-tube to use.