얼굴 검출은 디지털화 된 임의의 정지 영상 혹은 연속된 영상으로부터 얼굴 존재유무를 판단하고, 얼굴이 존재할 경우 영상 내 얼굴의 위치, 방향, 크기 등을 알아내는 기술로 정의된다. 이러한 얼굴 검출은 얼굴 인식이나 표정인식, 헤드 제스쳐 등의 기초 기술로서해당 시스템의 성능에 매우 중요한 변수 중에 하나이다. 그러나 영상 내의 얼굴은 표정, 포즈, 크기, 빛의 방향 및 밝기, 안경, 수염 등의 환경적 변화로 인해 얼굴 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 오류-역전파 신경망을 사용하여 몇가지 환경적 조건을 극복한 정확하고 빠른 얼굴 검출 방법을 제안한다. 제안된 방법은 표정과 포즈, 배경에 무관하게 얼굴을 검출하면서도 빠른 검출이 가능하다. 이를 위해 신경망을 이용하여 얼굴 검출을 수행하고, 검색 영역의 축소와 신경망 계산 시간의 단축으로 검출 응답 시간을 빠르게 하였다. 검색 영역의 축소는 영상 내 피부색 영역의 분할과 차영상을 이용하였고, 주성분 분석을 통해 신경망의 입력 백터를 축소시킴으로써 신경망 수행 시간과 학습 시간을 단축시켰다. 또, 추출된 얼굴 영상에서 포즈를 추정하고 눈 영역을 검출함으로써 얼굴 정보의 사용에 있어 보다 많은 정보를 추출할 수 있도록 하였다. 얼굴 검출 실험은 마할라노비스 거리를 사용하여 검출된 영상의 얼굴 여부를 판정하고, 성공률과 시간을 측정하였다. 정지 영상과 동영상에서 모두 실험하였으며, 피부색 영역의 분할을 사용할 경우 입력 영상의 칼라 설정의 유무에 다른 검출 성공률의 차를 보였다. 포즈 실험도 같은 조건에서 수행되었으며, 눈 영역의 검출은 안경의 유무에 다른 실험 결과를 보였다. 실험 결과 실시간 시스템에 사용 가능한 수준의 검색률과 검색 시간을 보였다.
본 논문에서는 일반적인 문서를 CCD 카메라로 입력 받은 후, 사용자가 원하는 영역을 손가락으로 선택하면, 손 인식 알고리즘을 적용하여 사용자의 손가락 움직임을 검출하고, 손가락으로 선택되어진 영역을 인식한 후, 선택되어진 영역으로 카메라를 이동시켜 획득된 영상을 문자 인식 가능한 크기로 확대/축소하며, 확대된 영상에 문자인식 알고리즘을 적용하여 문서로 변환하는 시스템을 구현하였다 최종적으로 사용자가 이 시스템의 존재를 인지하지 못할 만큼 자연스럽게 사용할 수 있는 시스템을 구현하고자 하였다.
본 논문에서는 영상 검색 방법의 하나인 내용에 기반을 둔 검색 방법(content based retrieval)으로 주변 화소의 컬러 히스토그램(NCH)을 이용하는 방법을 제안한다. 제안한 방법은 각 화소에 대해 주변 화소의 컬러 히스토르램을 데이터베이스의 색인 정보로 정장하는 방법으로, 영상의 공간 정보와 컬러 정보를 효과적으로 결합한 방법이다. 실험결과, 제안한 방법은 히스토그램과 CCV(Color Coherence Vector)를 이용한 방법보다 검색 효율이 우수하고 카메라의 위치 및 확대, 축소에 따른 영상의 큰 변화에도 매우 강인한 것으로 나타났다.
영상의 밝기로부터 표면의 높이를 효과적으로 재구성하기 위한 방안으로 먼저 DCT공간상에서 표면의 형태를 구성한다. 이렇게 구성된 표면형태에 대한 정보를 기초로 축소된 영상과 입력영상에 대해 단계별로 표면을 구성한다. 표면 재구성 과정에서 생성되는 물체의 대략적인 표면정보는 버려지지 않고 게임 등 실시간으로 빠르게 처리해야하는 그래픽을 제공하기 위한 LOD(Level of Detail) 정보를 구성한다. 멀리 있는 물체에 대한 빠른 렌더링을 위해 표면 재구성 초기에 구성된 LOD 메쉬정보를 이용하고 가까운 물체의 경우에는 세밀한 표면의 형태를 표현하는 LOD 메쉬를 사용함으로써 그래픽 처리의 효율을 높일 수 있게 된다.
본 논문에서는 기존의 칼라 특성을 이용한 내용 기반 영상 검색 방법을 적용 영역별로 분류 할 수 있는 기준을 제시하고, 그 기준에 의해 영상 내 공간 정보를 충분하게 표현할 수 있어 이동 및 회전 확대/축소 변형에 강한 영상 검색 방법을 제안한다. 일반적으로 칼라 특성을 이용한 내용 기반 영상 검색은 영상 내 공간정보를 충분하게 표현하지 못하여 이동 및 회전, 확대/축소 변형에 약한 단점을 지니고 있다. 이에 기존 연구에서는 인위적으로 영상을 여러 개로 분할하는 방법 등으로 공간 정보를 표현하고자 하였지만 특징 벡터의 수가 급격히 늘어남에 따라 검색 효율이 저하된다는 단점을 가지고있다. 본 논문에서는 기존의 방법을 사용된 칼라 객체의 상호 관계에 따라 1차와 2차 관계에 의한 방법으로 분류하고, 이동, 회전 특히 크기 변화(축소,확대)에 탁월한 성능을 보이는 칼라 객체의 3차 관계를 이용한 방법을 제안한다. 제안된 방법은 주어진 영상으로부터 양자화된 24개의 버킷을 생성해서 각 버킷의 히스토그램의 크기 순서로 세 개 버킷을 선정하고 그들의 평균 칼라 위치를 계산해서 그들 간의 상호 각도를 추출하여 영상의 특징 벡터로 사용하였다. 실험 결과 기존 방법보다 특히 영상의 크기 변화에 대해 좋은 결과를 얻을수 있었으며, 계산량도 적어 효율적임을 보여 주었다.
영상에서 임의의 점에 대한 고유한 특징을 계산하는 알고리즘은 파노라마 영상의 제작, 스테레오 영상의 획득, 물체 인식, 이미지 분석 등에 다양하게 사용되는 중요한 요소이다. 일반적으로 어떤 점의 특징은 스칼라 형태가 아닌 벡터형태로 나타나게 되는데, 무수히 많은 특징 점들을 서로 비교하는 작업은 매우 많은 계산량을 요구한다. 본 연구에서는 영상의 특징점 계산에 SURF(speeded up robust features)를 이용하였고, 이미지로부터 추출된 특징을 PCA(principal component analysis)기법을 이용하여 벡터의 차원을 축소하여 연결리스트 자료구조에 정렬한 다음 특징을 비교하는 기법을 제안한다. 제안된 특징의 비교 방법을 적용할 경우 기존 방법의 매칭 정확도는 유지한 상태에서 계산시간을 줄일 수 있는 것을 실험을 통하여 확인하였다.
본 논문에서는 깊이맵을 활용하여 살아있는 객체 입체영상 구현을 제안한다. 살아있는 객체 입체영상은 입력영상에 있는 각 객체가 움직이도록 제작되어 2D영상의 시청에서 살아있는 객체들을 시청할 수 있다. 제안 시스템은 C언어를 기반으로 제작되었으며, 한 장의 영상이 주어지면 그래픽 툴을 이용하여 영상에 따른 배경영상, 마스크 영상, 배경 깊이맵 영상, 객체 깊이 맵영상 파일을 생성한다. 이렇게 제작된 입력영상, 마스크영상을 이용하여 각 객체를 이동, 회전, 확대/축소를 통해 결과적으로 살아있는 객체로 구현하며, 이에 따라 변환된 영상에 깊이맵영상을 이용하여 실감있는 입체영상으로 구현한다. 실험영상은 조선시대 화가인 신윤복의 단오풍정을 이용하여 2D 입체영상으로 구현하였다.
본 논문에서는 낮은 비트율에서 PSNR을 향상시키고 부호화 과정에서의 계산의 복잡성을 감소시키기 위한 이산 웨이브릿 변혼 영역에서의 프랙탈 영상 압축 방법을 제안한다. 제안한 방법에서는 이산 웨이브릿 변환 계수에 절대치를 취한 다음 유효계수의 위치와 부호를 나타내는 유효계수 트리를 구성한다. 제안한 방법은 치역 블록의 유효계수에 대해서만 축소된 정의역 블록의 계수와 정합함으로써 PSNR을 향상시키고 정의역 블록의 집합에서 치역 블록으로의 정합에 필요한 계산의 복잡성을 감소시킨다. 또한 본 논문에서는 치역 블록과 정합되는 축소된 정의역 블록의 수를 최소화하는 분류 방법을 제안한다. 제안한 방법은 치역 블록과 축소된 정의역 블록의 비교 회수를 현저하게 감소시킨다.
본 논문은 완전한 규격의 비디오 디코더를 구현하는 것이 아니라 하드웨어의 메모리를 절반으로 줄인 비디오 디코더에 관한 것이다. 우선 프레임 메모리를 수평 방향으로 1/2 만큼 축소시키는 방법을 제시하고, 다음으로 이렇게 축소되어 저장된 프레임 메모리를 움직임 보상을 하기 위해 다시 Interpolation하는 방법을 제시한다. 이 때 여러 방법의 모의 실험을 통해 추출된 영상의 특징들을 이용하여 메모리를 줄였을 때 나타나는 화질의 열화와 에러의 누적을 최소화하는 적응적인 알고리즘을 제시하고, 컴퓨터 모의 실험을 통해 기존에 사용하던 방법과 비교하여 제안된 알고리즘의 성능을 검증하고 결론을 맺는다.
슈퍼임포즈는 개인식별 방법으로 신원 미상의 두개골의 발견 시, 두개골의 사진과 용의자 생전 사진의 동일 비율로 확대, 축소 후 두 영상을 중첩하므로서 동일인 여부를 비교, 판별하는 기법이다. 삼풍백화점 붕괴사고와 Guam KAL기 추락사고와 같이 대형사건에서의 개인식별에 매우 중요한 문제이다. 본 연구는 비디오 카메라로 입력한 두개골 영상과 스캐너로 입력한 생전 사진의 중첩을 위한 H/W 시스템의 구축과 영상처리 기법을 응용한 응용 프로그램을 개발하였다 슈퍼임포즈의 영상처리 기법으로는 두개골 및 생전 사진의 윤곽선 추출, 중첩점 조정, 상,하,좌,우 각도조정, 윤곽선보정, Hue 조정, 히스토그램 조정 등 다양한 영상처리 기법을 응용하였다. 또한, 이들 영상처리기법은 법의학 체제에 입각한 슈퍼임포즈 영상합성이 개인식별 감정시 필요한 최적의 영상 비교가 가능하도록 DB 시스템 구축과 분석시스템을 개발하였다. 그리고, 실제 감정시 본 영상시스템으로 감정해 본 결과로 보다 정확하고 실시간으로 감정이 가능하다. 본 슈퍼 임포즈 영상시스템은 슈퍼 임포즈 영상자료의 처리와 축적 기술의 발전으로, 두개골 영상과 생전 사진을 이용한 생전의 3차원 실 영상의 복원연구가 가능하리라 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.