• Title/Summary/Keyword: 축소 노즐

Search Result 93, Processing Time 0.021 seconds

Performance Characteristics Under Non-Reacting Condition with Respect to Length of a Subscale Diffuser for High-Altitude Simulation (고고도 모사를 위한 축소형 디퓨저의 길이변화에 따른 비연소장에서의 성능특성)

  • Jeong, Bonggoo;Kim, Hong Jip;Jeon, Junsu;Ko, Youngsung;Han, Yeoung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • The performance characteristics of a subscale diffuser under non-reacting conditions for high-altitude simulation were numerically investigated with respect to different lengths of the secondary throat diffuser. The ratio of the length of the diffuser entrance to the nozzle exit diameter was set to 0, 50, and 100%. In addition, flow characteristics were studied for a range of length-to-diameter ratios of the secondary throat diffuser. An insufficient diffuser entrance length caused contraction of the plume immediately after the nozzle exit. When the length-to-diameter ratio was less than 8, a strong Mach disk was formed inside the diffuser, resulting in a sharp increase in pressure. In addition, flow characteristics in the diverging part of the diffuser were investigated for a range of diverging part lengths. A short diverging part may lead to abrupt pressure recovery, resulting in the possible application of mechanical load to the diffuser.

Analysis on Roll Damping Induced by Propulsion Jet of Rolling Airframe Missile (회전 유도탄의 추진 제트에 의한 롤 댐핑 해석)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.81-86
    • /
    • 2004
  • Between rolling airframe missile and swirling propulsion jet passing through convergent-divergent nozzle of the rocket motor, occur exchanges of angular momentum which result in the increase of roll speed of the missile. This phenomena in called jet roll damping. In the study jet roll damping was formulated from conservation equation of angular momentum. And the maximum value of the jet roll damping of KPSAM was estimated with assumed swirl velocity distribution at nozzle exit and compared with result of computation of axisymmetric compressible turbulent nozzle flow.

Preliminary Study of Micro Cold Gas Thruster (마이크로 콜드 가스 추력기의 선행 연구)

  • Seonghwan Moon;Hwayoung Oh;Hwanil Huh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.54-61
    • /
    • 2004
  • Miniaturization of subsystems including propulsion systems is recent trends in spacecraft technology. Small space vehicle propulsion is not only a technological challenge of a scaling system down, but also a combination of fundamental flow/combustion constraints. In this paper, physical constraints of micronozzle for cold gas micro-thruster are reviewed and discussed. Method to measure small thrust are also described.

제트베인의 형상과 받음각 변화에 따른 유동특성연구

  • 길경섭;신완순;이택상;박종호;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.35-35
    • /
    • 2000
  • 추력 편향제어(Thrust Vector Control)는 위성 발사체나 대륙간 탄도 미사일과 같이 공기가 희박한 고 고도에서의 비행자세 제어와 궤도수정, 지대공이나 함대공 유도탄처럼 발사 직후 저속에서 임의의 방향으로 급선회해야 할 경우에 노즐의 배출가스 방향을 직접 조절하여 모멘트를 발생시키는 제어방식을 말한다. 이 방식 중 널리 사용되고 있는 제트 베인 추력 편향제어방식은 베인이 직접 고온, 고속의 가스 흐름내에서 작용하기 때문에 재료는 내열성과 제트 베인 주위에 형성되는 유동 특성, 그리고 베인간의 유동 간섭이 중요한 인자이다. 그러므로, 제트 베인의 실용화는 수치해석에 의존하던 개발 초기나 중기의 설계 단계에서 벗어나 실제 크기나 축소모델의 유동 모사 시험에 의해 성능이 검증되어야 한다.(중략)

  • PDF

Biomimetic Analysis on the Spider Silk Apparatus for Designing the Nanofiber-spinning Nozzle (나노섬유 방사노즐 설계를 위한 거미 실크 방적장치의 생체모사 분석)

  • Moon, Myung-Jin;Kim, Hoon;Park, Jong-Gu
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.67-76
    • /
    • 2012
  • The biomimetic approach on the cuticular spinning nozzles of the major ampullate silk glands in the golden-web spider Nephila calvata has been attempted using various visualizing techniques of light and electron microscopes to improve the design of spinning nozzle for producing synthetic nanofibers spun from electrospinning apparatus. The major ampullate spigot which has the most effective nozzle system to produce nanofibers for dragline silk with high strength and elasticity is connected via the bullet type spigot on anterior spinneret with flexible terminal segment. The excretory duct which transports the liquid silk feedstock from ampulla to spigot is divided into 3 limbs by loops back on itself to form an S-shape morphology that is bundled in connective tissue. Final diameter of the nanofibers at nozzle was dramatically reduced by gradual narrowing of duct cuticle less than 10 times comparing to its original size of funnel region. Moreover, the funnel has a characteristic cuticular organization with porous microstructure which seems to be related to water removal from feedstock of silk precursors. High magnification electron micrographs also reveal the presence of the spiral grooves on the surface of the cuticular intima near the valve which presumed to reduce friction during rapid flow of liquid silk.

Performance Assessment of Two Horizontal Shroud Tidal Current Energy Converter using Hydraulic Experiment (수리실험을 통한 수평 2열 쉬라우드 조류에너지 변환장치 성능평가)

  • Lee, Uk-Jae;Choi, Hyuk-Jin;Ko, Dong-Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, the two horizontal shroud tidal current energy converter, which can generate power even under low flow speed conditions, was developed. In order to determine the shape of the shroud system, a three-dimensional numerical simulation test was conducted, and a 1/6 scale down model was made to perform a hydraulic model experiment. The hydraulic model experiment was performed under four flow conditions, and the flow speed, torque, and RPM were measured for each experimental case. As a result of the numerical simulation test, it was found that the flow speeds passing through the nozzle were increased by about 2~3 times in the cylinder, and when the extension ratio was 2:1, the highest flow speed was shown. In addition, it was found that the flow speeds increased 2.8 times when the diameter ratio between the nozzle and the cylinder was 1.5:1. Meanwhile, as a result of the hydraulic model experiment, it was found that when the tip speed ratio was between 1.75 and 2, the power coefficient was 0.32 to 0.34.

EFFECTS OF CONVERGENT ANGLE OF NOZZLE CONTRACTION ON HIGH-SPEED OPTICAL FIBER COATING FLOW (노즐 축소부 수렴각이 고속 광섬유 피복유동에 미치는 영향)

  • Park, S.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.11-18
    • /
    • 2016
  • A numerical study is conducted on the optical fiber coating flow in a primary coating nozzle consisting of three major parts: a resin chamber, a contraction and a coating die of small diameter. The flow is driven by the optical fiber penetrating the center of the nozzle at a high speed. The axisymmetric two-dimensional flow and heat transfer induced by viscous heating are examined based on the laminar flow assumption. Numerical experiments are performed with varying the convergent angle of nozzle contraction and the optical fiber drawing speed. The numerical results show that for high drawing speed greater than 30 m/s, there is a transition in the essential flow features depending on the convergent angle. For a large convergent angle greater than $30^{\circ}$, unfavorable multicellular flow structures are monitored, which could be associated with wall boundary-layer separation. In the regime of small convergent angle, as the angle increases, the highest resin temperature at the exit of die and the coating thickness decrease but the sensitivity of coating thickness on drawing speed and the maximum shear strain of resin on the optical fiber increase. The effects of the convergent angle are discussed in view of compromise searching for an appropriate angle for high-speed optical fiber coating.

Study on the Design and Operation Characteristics of Ejector System (이젝터 시스템의 설계 및 작동 특성에 관한 연구)

  • NamKoung, Hyuck-Joon;Han, Poong-Gyoo;Kim, Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.627-630
    • /
    • 2009
  • Ejector system can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an configuration and operating conditions for an ejector in the condition of sonic and subsonic. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Numerical simulation was adopted for an optimal geometry design and satisfying the required performance. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Novel Ramjet Propulsion System with H2O2-Kerosene Rocket as an Initial Accelerator (H2O2-케로신 로켓을 초기 가속장치로 갖는 새로운 램젯 추진기관)

  • Park, Geun-Hong;Lim, Ha-Young;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • New concept ramjet propulsion system with liquid bipropellant rocket using "Green Propellant" hydrogen peroxide for launch stage is proposed. In this novel concept, hydrogen peroxide gas generator produces hot oxygen at launch stage and kerosene injects to this jet in combustor. For basic study of this new concept ramjet system, investigation of auto-ignition characteristics and combustion of decomposed hydrogen peroxide and kerosene was conducted. In various test cases, auto-ignition and stable combustion was verified. The combustion temperature of 400°C and Fuel/Oxidizer mixture ratio of 0.6 were the limit of auto ignition. Through the experiment results, the possibility of novel concept combined propulsion system using hydrogen peroxide gas generator is ascertained.

Numerical Simulation of Steam Jet Vacuum System in Multi-effect Desalination Plant (다중효용 담수 설비의 증기이젝터 진공장치에 관한 수치해석)

  • Ko, Sang-Cheol;Kim, Yong-Sun;Choi, Du-Youl;Kim, Pil-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.238-242
    • /
    • 2015
  • A steam jet vacuum system that will be implemented in a multi-effect desalination plant is numerically investigated. The objective of this study is to numerically investigate the performance characteristic of the steam jet vacuum system for the sea water distillation process. The effects of design parameter such as nozzle size and converging duct angle are discussed in order to get a better understanding of flow characteristics inside the steam ejector and subsequently pave the way for more optimum designs. The simulation results have been in good agreement with experimental data and have well reproduced the shock train phenomena of the throat region.