• Title/Summary/Keyword: 축방향 허용압축응력

Search Result 4, Processing Time 0.018 seconds

Allowable Axial Stress Estimation of Corrosion Resistance Steel Tubes for Port and Offshore Structures (항만 및 해양구조용 고강도 내식성 원형강관의 축방향 허용압축응력 산정)

  • Oh, Chang Kook;Park, Jang Ho;Bae, Doobyong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.263-270
    • /
    • 2016
  • Corrosion resistance steel has been widely used for port and offshore structures exposed to harsh coastal and oceanic environments, due to lower corrosion rate. New higher strength corrosion resistance steel tubes named STKM500 in KS D 3300 were recently developed by domestic technology and expected to replace foreign ASTM A690 steel. In this study, tensile test results are included to show higher yield and tensile strength of STKM500. Then, buckling test results obtained from 2m, 6m, and 12m steel tubes are demonstrated, based on which an allowable axial compressive stress curve for STKM500 steel tubes is suggested.

Comparison of Allowable Axial Stress Provisions of Cylindrical Liquid Storage Tanks under Seismic Excitation (지진 하중을 받는 원통형 플랜트 탱크 구조물의 축방향 허용압축응력 설계기준 비교 연구)

  • Oh, Chang Kook;Lee, So Ri;Park, Jang Ho;Bae, Doobyong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.293-301
    • /
    • 2016
  • Stability of cylindrical liquid storage tanks under seismic excitation could prevent catastrophic disaster of human life and economic loss. Domestic provisions on allowable compressive stress in tank walls to prohibit buckling failure are either incomplete or inconsistent, so foreign specifications such as API 650, BS EN 1998-4:2006 or New Zealand Standards are employed in stability design. In this study, response spectrum analyses are performed for plant tanks having different ratios of height to diameter or diameter to thickness to calculate hydrodynamic pressure on tank walls. Then nonlinear buckling analyses are conducted to estimate magnitude of buckling stress. By comparing analysis results with those from foreign design specifications, appropriate domestic design provisions are suggested.

Analysis and Design of Support Strut in Innovative Prestressed Scaffolding(IPS) System (혁신적 프리스트레스트 가시설 구조시스템(IPS)에 적용되는 중간 버팀보의 해석 및 설계)

  • Kim, Sung Bo;Han, Man Yop;Kim, Moon Young;Kim, Nak Kyung;Han, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.627-636
    • /
    • 2005
  • The analysis and design procedure of intermediate support strut for the innovative prestressed scaffolding (IPS) system was presented in this paper. The stability check of intermediate support strut is required as the behavior of the strut system is similar to that of the built-up column. The computer analysis model of the support strut was constructed for in-plane and out-of-plane buckling analysis, and the design of the support strut was performed. Using the eigenvalue for the buckling load and the member forces of support strut under design earth pressure, the effective buckling length was estimated. The allowable axial and bending stresses were calculated considering the effective buckling length. The combined stresses due to these axial forces and bending moment were estimated to be satisfied the safety condition of the intermediate support strut.

A Study on the Structural Stability of Prefabricated Strut for Ground Excavation Construction (지반굴착용 조립식 버팀보의 구조 안정성에 관한 연구)

  • Lee, Ki-Sun;Kim, Doo-Hwan;Song, Kwan-Kwon;Kim, Seong-Pil;Kim, Jeong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • In study, Structural stability was considered when applying the high strength strut method with improved general strut method. considered whether there is sufficient stiffness to so as not buckling to the maximum hypothetical earth pressure. also structure stability of the strut component was reviewed. The high strength strut method is a technique used in place of the general strut method. high strength prefabricated Strut method is a technique that has bolt holes drilled in the upper flange at regular intervals. As a result of the buckling analysis, it was considered that the safety factor increased by about 5 %. also Since the stress generated is below the allowable stress, it is judged that structural stability of the strut is ensured. In particular, the safety factor of axial compressive stress increases about 16 % with use of high strength steel when applying the high strength prefabricated strut method. the high strength strut method is construction method may shorten the construction period and there is no expense to purchase additional materials.