• Title/Summary/Keyword: 축방향 피딩

Search Result 2, Processing Time 0.015 seconds

Hydro-forming Process of Automotive Engine Cradle by Computer Aided Engineering (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 엔진 크레들의 하이드로-포밍 공정 연구)

  • Kim, Kee-Joo;Choi, Byung-Ik;Sung, Chang-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.86-92
    • /
    • 2008
  • Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of front engine cradle (or front sub-frame) parts development by tube hydro-forming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydro-formability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape on automotive sub-frame by hydro-forming process were carefully investigated. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydro-forming. At the die design stage, all the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.

Hydro-forming Process of Automotive Rear Sub-frame by Computer Simulation (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 리어 서브-프레임의 하이드로-포밍 공정 개발)

  • Kim, Kee-Joo;Sung, Chang-Won;Baik, Young-Nam;Lee, Yong-Heon;Bae, Tae-Sung;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.38-43
    • /
    • 2008
  • The hydroforming technology has been spreaded dramatically in automotive industry last 10 years. Itmay cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower springback, improved strength and durability and design flexibility. In this study, the whole process of rear sub-frame parts development by tube hydroforming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.