• Title/Summary/Keyword: 축방향철근 겹침이음

Search Result 8, Processing Time 0.017 seconds

Strength Degradation and Failure of Circular RC Bridge Columns with Longitudinal Steel Connection under Cyclic Lateral Load (반복횡하중을 받는 철근콘크리트 원형 교각의 축방향철근 연결상세에 따른 강도저감 및 파괴거동)

  • Lee Jae-Hoon;Jung Chul-Ho;Ko Seong-Hyun;Son Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.111-124
    • /
    • 2004
  • This research is a part of a research program to verify the seismic performance of circular reinforced concrete bridge columns with respect to longitudinal steel connection details under cyclic lateral load. A total of 21 column specimens were constructed and tested. Main variables in this test program were longitudinal steel connection details(continuous, lap-spliced, and mechanically connected), confinement steel ratio, and axial force ratio, etc. The test results of the columns with different longitudinal steel connection details showed different failure mode, strength degradation, and seismic performance. From the quasi-static test, it was found that the columns with all longitudinal reinforcement lap-spliced showed significantly reduced ductility. However, seismic performance of the columns with half of longitudinal reinforcement lap-spliced showed limited ductility but much more ductile behaviour than the columns with all longitudinal reinforcement lap-spliced. It was also found that the seismic performance, failure mode and strength degradation of columns with mechanical connected longitudinal reinforcement were similar to those of columns with continuous longitudinal reinforcement.

Seismic Performance of Circular RC Bridge Columns with Longitudinal Steel Connection Details (축방향철근 연결상세에 따른 철근콘크리트 원형교각의 내진성능)

  • Lee Jae-Hoon;Son Hyeok-Soo;Ko Seong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.249-260
    • /
    • 2004
  • The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable, however the current Korean bridge design specifications have no special provisions about lap-splices of longitudinal steel. This paper reports experimental results of a research program investigating the seismic performance of circular RC bridge columns with respect to longitudinal steel connection detailing. Twenty-one circular column specimens were tested under quasi-static test. The columns with the entire longitudinal steel lap-spliced within plastic hinge region show relatively sudden strength degradation and low ductility than the columns with continuous longitudinal steel and the columns with half of longitudinal steel lap-spliced. However, the seismic performance of the column with mechanically connected longitudinal steel is similar to that of the column with continuous longitudinal steel. The final objectives of this study are to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, collapse, etc. Ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio, residual deformation index, and effective stiffness are investigated and discussed in this paper.

Seismic Performance of a Non-Seismic Designed Pier Wall and Retrofit Concept (비내진 벽식 교각의 내진성능 및 보강개념)

  • Hoon, Lee-Jae;Ho, Choi-Young;Soon, Park-Kwang;Seok, Ju-Hyeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.87-98
    • /
    • 2009
  • It is well known that reinforcement details in the plastic hinge region of bridge piers give the most important effects on the seismic performance of bridges, from investigations of bridge failures in many earthquake events and in laboratory tests. Longitudinal reinforcement details give larger effects than lateral reinforcement details do. The lap-spliced longitudinal steel shows slip during earthquake events, which results in low ductility and inadequate seismic performance. However, before the issue of the earthquake design code, a considerable number of bridge piers were constructed with lap-spliced longitudinal steel in the plastic hinge region. Therefore, a large amount of research has been conducted on the seismic performance and retrofit of circular and rectangular shaped bridge columns with lap-spliced longitudinal steel. However, research on wall type piers is very limited. This paper investigates the seismic performance of a pier wall by a quasi-static test in the weak axis direction and proposes a retrofit method. From the test with variables being the longitudinal steel detail and the transverse steel amount, it is shown that the currently used definition of yield displacement is not adequate. Therefore a new definition of yield displacement for the ductility investigation for a pier wall is proposed. In addition, a retrofit method by steel plates and bolts is proposed to improve ductility, and test results show that slip of the longitudinal steel is prevented by up to a considerably large displacement.

Seismic Characteristics of Hollow Rectangular Sectional Piers with Reduced Lateral Reinforcements (횡방향철근이 감소된 중공사각단면 교각의 내진거동 특성)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.51-65
    • /
    • 2009
  • The seismic design concept of RC bridges is to attain the proper ductility of piers, yielding a ductile failure mechanism. Therefore, seismic design force for moment is determined by introducing a response modification factor (R), and lateral reinforcements to confine core concrete are specified in the current design code. However, these design provisions have irrationality, which results in excessive amounts of lateral reinforcements for columns in Korea, which are generally designed with large sections. To improve on these provisions, a new design method based on seismic performance has been proposed. To apply this to hollow sectional columns, however, further investigations and improvements must be performed, due to the different seismic behaviors and confinement effects. In this study, hollow sectional columns with different lap-splice of longitudinal bars and lateral reinforcements have been tested. Seismic characteristics and performance were investigated quantitatively. These research results can be used to derive a performance-based design for hollow sectional columns.

Experimental Behavior of Reinforced Concrete Column-Bent Piers under Bidirectional Repeated Loading (이축반복하중을 받는 2주형 철근콘크리트 교각의 실험거동)

  • Park, Chang-Kyu;Lee, Beom-Gi;Song, Hee-Won;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.17-24
    • /
    • 2005
  • Response of reinforced concrete (RC) column-bent piers subjected to bidirectional seismic loadings was experimentally investigated. RC column-bent piers represent one of the most popular shapes of piers used in Korea highway bridges. Four column-bent piers were constructed in 400 mm diameter and 2,000 mm height. Each pier has two circular supporting columns. These piers were tested under bidirectional lateral load reversals with an axial load of $0.1f_{ck}A_g$. The test parameters included : different transverse reinforcement contents and lap-spliced longitudinal reinforcing steels. Test results indicate that the lap splice of longitudinal reinforcing steels have significantly influenced on hysteretic response of column-bent piers similar to previous test results for single columns with corresponding test parameters. Column capacity was changed with the level of transverse confinement. From the comparison of test result for single column under unidirectional loading, the damage of single column was concentrated on lower plastic hinge region but the damage of column-bent piers was scattered to upper and lower plastic hinge region.

An Experimental Study on the Structural Behavior of Concrete Columns Confined with Welded Reinforcement Grids (용접 띠철근 보강된 콘크리트 기둥의 역학적 거동에 관한 실험적 연구)

  • Choi, Chang-Sik;Saatcioglu, Murat
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.187-196
    • /
    • 1999
  • An experimental investigation was conducted to study the structural behavior of concrete columns confined with welded grids. The full-scale columns with different volumetric ratio, spacing and arrangement of welded reinforcement grids were tested under simulated seismic loading. The columns were subjected to constant axial compression of approximately 20% or 40% of their capacities accompanied by incrementally increasing lateral deformation reversals. The results indicate that the welded reinforcement grid can be used effectively as confinement reinforcement provided that the steel used, have sufficient ductility and the welding process employed does not alter the strength and elongation characteristics of steel. The grids improved the structural performance of columns, which developed lateral drift ratios in excess of 3% with the spacing and volumetric ratio of transverse reinforcement similar to those required by the ACI 318-95 Building Code. Drift capacity further increased when grids with larger number of cells were used. Furthermore, the use of grids reduced congesting of reinforcement while the dimensional accuracy provided perfect support to longitudinal reinforcement.

Seismic Behavior of Circular Sectional RC Bridge Columns with Various Lap-splice Lengths - An Experimental Study - (축방향철근 겹침이음길이에 따른 RC원형 교각의 거동특성 - 실험적 연구 -)

  • Kim, Ick Hyun;Sun, Chang Ho;Lee, Seung Hwa;Park, Kwang Soon;Seo, Hyeong Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.47-56
    • /
    • 2012
  • It is known that seismic performance of existing bridges having insufficient lateral confinements and lap-splices of longitudinal reinforcements at the base of column decreases dramatically. In this study, small-scaled model tests have been performed to confirm the seismic behaviors of RC bridge piers with various lap-splice lengths. The 8 test models have circular section with diameters of 0.65 m, 0.8 m, 1.0 m, and lap-splice lengths of B-class or C-class. The test results show that the failure modes of models are not depending on the lap-splice length itself but depend on the ratio of lap-splice length to diameter, and that the displacement ductility is also affected by this ratio.

Seismic Performance Assessment of Existing Circular Sectional RC Bridge Columns according to Lap-splice Length of Longitudinal Bars (축방향철근의 겹침이음길이에 따른 원형 RC교각의 내진성능평가)

  • Park, Kwang Soon;Seo, Hyeong Yeol;Kim, Tae-Hoon;Kim, Ick Hyun;Sun, Chang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.201-212
    • /
    • 2014
  • The plastic hinge region of RC pier ensures its nonlinear behavior during strong earthquake events. It is assumed that the piers secure sufficient strength and ductility in order to prevent the collapse of the bridge during strong earthquake. However, the presence of a lap-splice of longitudinal bars in the plastic hinge region may lead to the occurrence of early bond failure in the lap-splice zone and result in significant loss of the seismic performance. The current regulations for seismic performance evaluation limit the ultimate strain and displacement ductility considering the eventual presence of lap-splice, but do not consider the lap-splice length. In this study, seismic performance test and analysis are performed according to the cross-sectional size and the lap-splice length in the case of longitudinal bars with lap-splice located in the plastic hinge region of existing RC bridge columns with circular cross-section. The seismic behavioral characteristics of the piers are also analyzed. Based upon the results, this paper presents a more reasonable seismic performance evaluation method considering the lap-splice length and the cross-sectional size of the column.