• Title/Summary/Keyword: 축류

Search Result 486, Processing Time 0.027 seconds

Experimental Study on the Flow Characteristics in a Low Speed Research Compressor (연구용 저속 축류압축기의 내부 유동 특성에 관한 실험적 연구)

  • Park, Tae-Choon;Han, Jung-Youp;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.54-63
    • /
    • 2008
  • A study on the flow characteristics in a 4-stage axial compressor and the behavior of rotating stall was experimentally performed at the third-stage rotor and stator rows in order to investigate its performance and instability of the compression system. The pressure losses generated due to the leakage flow at a tip clearance and a shroud seal clearance and the wake flow near the trailing edge of a blade were taken into consideration to estimate the causes of performance drop of the low speed research compressor(LSRC) in Seoul national university. In addition, the measurement of rotating stall was conducted with hot-wire probes and the existence and propagation of stall cell could be confirmed through fast Fourier transform and cross-correlation analysis.

Prediction of flow field in an axial compressor with a non-uniform tip clearance at the design and off-design conditions (설계점 및 탈설계점에서 비균일 익단 간극을 가지는 축류 압축기의 유동장 예측)

  • Kang, Young-Seok;Park, Tae-Choon;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.46-53
    • /
    • 2008
  • Flow structures in an axial compressor with a non-uniform tip clearance were predicted by solving a simple prediction method. For more reliable prediction at the off-design condition, off-design flow characteristics such as loss and flow blockage were incorporated in the model. The predicted results showed that flow field near the design condition is largely dependent on the local tip clearance effect. However overall flow field characteristics are totally reversed at off-design condition, especially at the high flow coefficient. The tip clearance effect decreases, while the local loss and flow blockage make a complicated effect on the compressor flow field. The resultant fluid induced Alford's force has a negative value near the design condition and it reverses its sign as the flow coefficient increases and shows a very steep increase as the flow coefficient increases.

Flow characteristics of axial fan with shroud (축류홴과 슈라우드의 유량 및 내부 유동 특성)

  • Lee, Kwang-Hee;Kim, Jae-Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.30-36
    • /
    • 2008
  • Axial fan without static blades requires the duct as a guidance for unskewed inflows. This work examined the geometric effects of a duct guided the in and out flows through an impeller. The present methodologies are computational predictions with parallel work by experimental validation. Several different positions of a rotor in a duct are proposed for plausible models of a rotor inside a duct. The optimum axial position of an impeller in a duct is found at the #4 model where the impeller lies on the inlet edge of a circular duct. The model shows a wider inlet area. The result of computational prediction is in good agreement with experiment measurement.

Internal Flow Characteristics of a Steelworks Sintering Cooler by the Duct Shape of Cooler Fan Outlet (제철소 소결냉각용 축류송풍기 출구 덕트 형상에 따른 내부유동특성)

  • Choi, Young-Do;Kim, Kyoung-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.72-77
    • /
    • 2014
  • Because of overload working condition of sintering cooler, the cooler fan often suffers the break or damage of rotor blade and fixing shaft. Therefore, internal flow characteristics of a steelworks sintering cooler fan by the duct shape of the cooler fan outlet, such as duct outlet opening ratio, duct height and dividing wall shape on the duct outlet flow pattern are examined in detail. The results show that relatively short duct wall height and attachment of dividing wall shape improves flow patterns considerably.

Off-Design Performance Prediction of Multi-Stage Axial-Compressor by Stage-Stacking Method (단 축적법을 이용한 다단 축류 압축기 탈설계 성능예측)

  • Park, Tae-Jin;Baek, Je-Hyun;Yoon, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.789-794
    • /
    • 2001
  • In this study, a program for the off-design performance prediction of multi-stage axial-compressors is developed based on stage-stacking method. To account for the increased losses at off-design conditions, generalized performance curve is applied. The purpose of this study is to investigate the influence of the choice of generalized performance curve and stator exit angle. For this purpose, we tested various generalized performance curves and stator exit angles. In conclusion, Muir's pressure coefficient curve gives a good prediction results regardless of the efficiency curve for a low-stage compressors. On the other hand, for high-stage compressors, The combination of Muir's pressure coefficient curve and Stone's efficiency curve gives a optimistic results. Stator exit angle has a small effect on overall performance curve.

  • PDF

Axial-Compressor Design with Mean-line Analysis and Vortex Method (평균유속법과 Vortex 방법을 사용한 축류압축기 설계)

  • Choi, Min-Suk;Yoon, Sugn-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.795-800
    • /
    • 2001
  • In this study, a program to design a multi-stage axial compressor is developed wi th mean-line analysis and vortex methods. In a preliminary design stage, a method. to design in a short time is needed and mean-line analysis is usually used for this purpose. Arbitrary pressure ratio and reaction can be assigned to generate overall geometry and several vortex methods are adopted to consider the radial distribution of velocity and reaction. The variation of performance, when we use free vortex, forced vortex, and exponential method, is compared and discussed.

  • PDF

Design of An Axial Flow Fan with Shape Optimization (형상 최적화를 통한 축류송풍기의 설계)

  • Seo Seoung-Jin;Choi Seung-Man;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.603-611
    • /
    • 2006
  • This paper presents the response surface optimization method using three-dimensional Wavier-Stokes analysis to optimize the blade shape of an axial flow fan. Reynolds-averaged Wavier-Stokes equations with $k-{\epsilon}$ turbulence model are discretized with finite volume approximations using the unstructured grid. Regression analysis is used for generating response surface, and it is validated by ANOVA and t-statistics. Four geometric variables, i.e., sweep and lean angles at mean and tip respectively were employed to improve the efficiency. The computational results are compared with experimental data and the comparisons show generally good agreements. As a main result of the optimization, the total efficiency was successfully improved. Also, detailed effects of sweep and lean on the axial flow fan are discussed.

Development of Design Technology for Passenger Car Driveshaft Under the Real Load Conditions (실제하중 하에서의 축류설계기술 개발)

  • 이상록;이학주;김경식
    • Journal of the KSME
    • /
    • v.36 no.9
    • /
    • pp.855-866
    • /
    • 1996
  • 승요차 앞자축에 장착되어 회전하면서 동력을 전달하는 드라이브축은 운행중에 주로 비틀림하중을 받는다. 따라서 동 부품의 피로해석 및 설계를 위해서는 실제 운행중에 받는 서비스토크의 크기, 주파수 등에 관한 데이터가 필요하다. 차량에 탑재된 엔진의 토크와 회전수 등의 규격으로부터 드라이브축에 부가되는 최대 토크 값을 예측할 수 있으나, 자동차 운행주에는 승차인원, 도로조건, 운전자의 운전습관 등 여러가지 외적인 영향으로 인하여 서비스토크가 불규칙하게 변할 것으로 예상되므로 서비스토크를 정확히 예측하기는 어려운 실정이다. 또한, 최근의 자동차 구조부품에 대한 설계개념이 무한수명 설계에서 경량화 설계로 변화되고 있으며, 따라서 자동차 드라이브축도 실제 운용하중을 바탕으로 한 정확한 수명예측 및 강도설계가 요구되고 있다. 본 연구에서는 4륜구동형 승용차용 드라이브축에 대해 실제 운용하중에서의 피로수명을 예측하기 위해 1)텔리메트리를 이용하여 토크를 측정하고, 2) 일정진촉하중하에서의 드라이브축의 비틀림 피로시험을 수행하고, 3) 일정진폭하중하에서의 드라이브축의 비틀림 피로시험을 수행하고, 4) 축류 소재의 피로특성 데이터를 구성하여 5) 자체 개발한 프로그램으로 피로수명을 예측하고자 한다.

  • PDF

Surface Profile Measuring System for Axial Fan of Cooling Towers (냉각탑용 축류팬 형상 정밀도 측정 시스템)

  • Kang Jae-Gwan;Lee Kwang-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.151-158
    • /
    • 2005
  • An important component of a cooling tower is an axial fan, and there happens distortion in its shape which brings significant loss of efficiency. In this paper, a surface profile measuring system for large size axial fan of cooling towers is developed. A laser sensor is used as a measuring device and aluminum profiles and stepping motors are engaged into the system as frame structure and driving devices respectively. The measuring data are compared to the design data to compute the distortion of the axial fans. Two types of errors, axial and twist errors, are used to represent the precision of axial fan distortion. Genetic algorithm is used to solve the optimization problem during computing the precision. Results are displayed three dimensionally in a solid-modeler as well as 2-D drawings to help users find it with ease.