• Title/Summary/Keyword: 축류

Search Result 486, Processing Time 0.023 seconds

An Estimation of Performance Test and Uncertainty of Measurement for a Large Axial-flow Fan Based on ANSI/AMCA 210 Standard (ANSI/AMCA 210 기준에 의한 대형 축류 송풍기의 성능시험 및 측정 불확도 평가)

  • Ko, Hee-Hwan;Chung, Cheol-Young;Kim, Kyung-Yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.24-29
    • /
    • 2014
  • In general, a large-capacity axial flow fan is used for industrial processes or ventilation in a social overhead capital infrastructure. The main characteristics of the large axial-flow fan need a lot of electrical power consumption and operate 24 hours a day, 365 days a year. Since the large axial flow fan consumes several hundreds to thousands kW per hour, both manufacturer and consumer are struggling to select high efficiency products for saving energy and reducing operation cost. Therefore, the performance testing should be accurately conducted in experimental equipments. The performance estimation and uncertainty of measurement of the axial-flow fan gathered from the result from nozzle shaped testing equipments certified with ANSI/AMCA standard and duct shaped testing equipment under the same experimental condition. The experimental results from both facilities have maximum 17% differences in performance evaluation and uncertainty of measurement. As considering that the differences, it is doubt about the reliability of testing result. The test was repeated with the specific term during 12 months because it is important to fully reflect the real conditions and to decide the repeatability of data. The evaluation of duct type testing facilities was failed to get an uncertainty measure. Testing results were previously published. As a series of previous paper, axial fan (∅1690 mm) and duct type testing facilities were fabricated. The purpose of fabricating testing equipment was testing an uncertainty measurement under the controlled environments.

Study on Noise Reduction by Optimizations of In-line Duct Flow (덕트의 유로 최적화를 통한 소음저감 연구)

  • Han, Jae-Oh;Lee, Soo-Young;Mo, Jin-Yong;Lee, Jai-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.803-808
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duel using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type) was examined to investigate the suitability for duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ},\;10^{\circ},\;15^{\circ}\;and\;20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}\;to\;20^{\circ}$. Finally, designed the shapes of D/S(Down Stream) in duct that agreed inlet angle($\delta$) of stationary blades with pitch angle($\beta$) of axial fan with centrifugal type and derived flow to duct medial, and changed the shape of motor-mount to reduce occurance of unstable vortex in tip of impeller, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

An Experimental Study of Surface Pressure on a Turbine Blade in Partial Admission (분사영역과 터빈익형 위치에 따른 표면압 변화에 관한 실험적 연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.735-743
    • /
    • 2011
  • In this study, the distribution of surface pressure was measured in a steady state on a turbine blade which was moved the injected region and receded the stagnation region using a linear cascade apparatus. Axial-type blades were used and the blade chord was 200mm. The rectangular nozzle was applied and its size was $200mm{\times}200mm$. The experiment was done at $3{\times}10^5$ of Reynolds number based on the chord. The surface pressures on the blade were measured at three different nozzle angles of $58^{\circ}$, $65^{\circ}$ and $72^{\circ}$ for off-design performance test. In addition, three different solidities of 1.25, 1.38 and 1.67 were applied. From the results, the low solidity caused the low pressure on the blade suction surface at entering region and the reverse rotating force was generated at the low nozzle angle. The positive incidence also made the pressure lower on the suction surface at entering region.

Performance of an Axial Turbo Fan by the Revision of Impeller Pitch Angle (피치각 수정에 따른 축류식 터보팬 성능 변화에 관한 연구)

  • Kang Seok-Youn;Lee Tae-Gu;Ryu In-Keun;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.268-276
    • /
    • 2005
  • The aim of this paper is to suggest one efficient method for the various requirements of performance during the process designing and producing an impeller. The study considers that the revisions of a pitch angle of an impeller at an axial turbo fan affect an air flow rates and a static pressure rise. The axial turbo fan specified with the 250 Pa maximum static pressure and 1300 CMH fan air flow rates was tested and analyzed by CFD. The Numerical results show that the air flow rates are calculated to 1,175 CMH, 1,223 CMH, 1,270 CMH, 1,340 CMH and 800 CMH in cases that the pitch angles are $44^{\circ},\;49^{\circ},\;54^{\circ},\;59^{\circ},\;and\;64^{\circ}$ respectively. Also the static pressure rises are shown to 108 Pa, 122Pa, 141 Pa, 188 Pa and 63 Pa at the same cases. The air flow rate is increased linearly according to the changes of the pitch angle from $44^{\circ}\;to\;59^{\circ}$ and the maximum air flow rate passing the impeller is increased to $13\%$ over at the case of $59^{\circ}$ pitch angle compared with the reference case of $54^{\circ}$ pitch angle. The static pressure rise is increased linearly according to the changes of the pitch angle from $44^{\circ}\;to\;54^{\circ}$, too. The static pressure rise at the $59^{\circ}$ pitch angle is increased to $33\%$ over compared with the $54^{\circ}$ pitch angle. The result shows that the revisions of pitch angle make the static pressure rise increase widely. However the air flow rates and the static pressure rise at the $64^{\circ}$ pitch angle are suddenly decreased because of over-changed pitch angle.

A Study of Development of an Axial-Type Fan with an Optimization Method (최적화기법을 이용한 축류형 송풍기개발에 관한 연구)

  • Cho, Bong-Soo;Cho, Chong-Hyun;Jung, Yang-Beom;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.7-16
    • /
    • 2007
  • An axial-type fan which operates at the relative total pressure of 671Pa and static pressure of 560Pa with the flow rate of $416.6m^3/min$ is developed with an optimization technique based on the gradient method. Prior to the optimization of fan blade, a three-dimensional axial-type fan blade is designed based on the free-vortex method along the radial direction. Twelve design variables are applied to the optimization of the rotor blade, and one design variable is selected for optimizing a stator which is located behind of the rotor and is used to support a fan driving motor. The total and static pressure are applied to the restriction condition with the operating flowrate on the design point, and the efficiency is chosen as the response variable to be maximized. Through these procedures, an initial axial-fan blade designed by the free vortex method is modified to increase the efficiency with the satisfaction of the operating condition. The optimized fan is tested to compare the aerodynamic performance with an imported same class fan. The test result shows that the optimized fan operates with the satisfaction of restriction conditions, but the imported fan cannot. From the experimental and numerical test, they show that this optimization method improves the fan efficiency and operating pressures of a fan designed by the classical fan design method.

A Study of Design Method of an Axial-Type Suction Fan (축류형 흡입송풍기 설계기술에 관한 연구)

  • Choi, Hyoung-Jun;Kim, Chang-Su;Cho, Chong-Hyun;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.42-51
    • /
    • 2010
  • Many different types of fan have been applying to various industrial fields. Fan design methods are much different depending on the types of fan, operating conditions, and connecting parts at the inlet or exit of the fan etc. In this study, design methods for an axial-type suction fan are studied. This fan discharges the air in the relative static pressure of -285Pa to the atmosphere with the flow rate of $960m^3/min$. For three-dimensional blade design, three different design methods were applied, such as the free vortex method, the exponential method, and the cascade method. In the cascade method, the blade loading along the radial direction was obtained from the lift coefficient which was necessary to obtain the pressure rise on a fan rotor. This method is different from the free vortex and the exponential method which control the strength of the vortex. The fan performance prediction was conducted using the CFD with three different inlet ducts. The best fan performance was obtained when the fan was designed by using the cascade method. The designed fan using the exponential method showed better performance compared to a fan designed using the free vortex method. However, the fan performance was changed depending on the installed inlet ducts. So, an efficient fan can be designed with the adjustment of design variables on the basis of the flow structures within the fan as well as the fan design procedure.

Numerical Analysis on Effects of the Boundary Layer Fence Equipped on the Hub of Rotor in the First Stage Axial Flow Gas Turbine (1단 축류 가스터빈내 동익의 허브면에 장착된 경계층 펜스의 효과에 대한 수치 해석적 연구)

  • Yoon, Deok-Kyu;Kim, Jae-Choon;Kim, Dae-Hyun;Lee, Won-Suk;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.8-16
    • /
    • 2009
  • The objective of this study is to investigate the three-dimensional turbulence flow characteristics of a rotor passage of an one-stage axial flow gas turbine and to investigate the effects of a boundary layer fence installed on the hub endwall of the rotor passage. Secondary flows occurring within the rotor passage (e.g. horseshoe vortex, passage vortex, and cross flow) cause secondary loss and reduce turbine efficiency. To control these secondary flows, a boundary layer fence measuring half the height of the thickness of the inlet boundary layer was installed on the hub endwall of the rotor passage. This study was performed numerically. The results show that the wake and secondary flows generated by the stator reduced the rotor load to constrain the development of cross flow and secondary flow reinforced by the rotor passage. In addition, the secondary vortices occurring within the rotor passage were reduced by the rotation of the rotor. Although, the boundary layer fence induced additional vortices, giving rise to an additional loss of turbine, its presence was shown to reduce the total pressure loss when compared to effects of the case without fence regardless of the relative position of blades by enervating secondary vortices occurred within the rotor passage.

Design of a Propeller Type Rim-Driven Axial-Flow Turbine for a Micro-Hydropower System (마이크로 수력 발전을 위한 프로펠러형 림구동 축류 터빈 설계)

  • Oh, Jin-An;Bang, Deok-Je;Jung, Rho-Taek;Lee, Su-Min;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.183-191
    • /
    • 2022
  • A design method for a propeller type rim-driven axial-flow turbine for a micro-hydropower system is presented. The turbine consists of pre-stator, impeller and post-stator, where the pre-stator plays a role as a guide vane to provide circumferential velocity to the on-coming flow, and the impeller as a rotational power generator by absorbing angular momentum of the flow. BEM(Blade Element Method), which is based on the turbine Euler equation, is employed to design the pre-stator and impeller blades. NACA 66 thickness form and a=0.8 mean camber line, which is widely accepted as a marine propeller blade section, is used for the pre-stator and turbine blade section. A CFD method, derived from the discretization of the RANS equations, is applied for the analysis of the designed turbine system. The design conditions of the turbine is confirmed by the CFD calculation. Turbine characteristic curve is calculated by the CFD method, in order to provide the performance characteristics at off-design operation conditions. The proposed procedures for the design of a propeller type rim-driven axial-flow turbine are established and confirmed by the CFD analysis.

Design Strategies for Multi-Stage Axial Turbines (다단 축류터빈 공력설계 및 공력성능 향상기법)

  • Kang, Young-Seok;Rhee, DongHo;Cha, BongJun;Yang, SooSeok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.78-82
    • /
    • 2014
  • This paper describes a brief aerodynamic design procedure of multi-stage axial turbine. The design procedure was established including one dimensional scratch design, through flow analysis with empirical correlations, two dimensional airfoil design and three dimensional airfoil stacking. Detailed aerodynamic performance assessment was done with full three dimensional CFD method at the design and off design conditions to construct turbine performance map. With the present method, aerodynamic design procedure of 1st and 2nd stages of high pressure turbine for 10,000lbf class turbofan engine was introduced.

PutStudy of Power Generation and Condensation Efficiency on MSTG of MSW Incineration Plant (폐기물소각설비 중 MSTG설비의 발전 및 응축효율에 관한 연구)

  • Jeon, Kuemha;Jeon, Kwangsik;Ha, Choongrai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.208.1-208.1
    • /
    • 2010
  • 일일 50톤 처리용량의 도시고형폐기물소각설비의 폐열 보일러에서 생산되는 4.0~6.5 bar의 저압증기를 이용하여 전력을 생산하는 축류식 MSTG설비에 있어서 공급증기압력, 입출구의 압력차이에 의한 발전효율을 비교하고, 저압의 증기의 균질화를 위한 기술분리, 정압유지설비 및 증기터빈의 본체의 기수분리된 증기의 응축효율을 증기공급율, 발전효율별로 비교분석하였다. 공급되는 증기의 압력, 증기터빈의 입출구 압력 차이가 높아짐에 따라, 증기의 응축효율이 증가를 하였으며, 배출되는 증기량에 따른 발전효율의 증가는 없었다. 따라서, 가변적으로 변하는 저압의 증기를 기수분리 및 정압을 유지하여도 증기질의 변동이 없으며 그에 따른 증기의 엔탈피 변화가 없으므로 발전 효율의 향상을 기대하기는 어려웠다.

  • PDF