• Title/Summary/Keyword: 축대칭유동

Search Result 178, Processing Time 0.024 seconds

A Study on Subcritical Instability of Axisymmetric Supersonic inlet (축대칭 초음속 흡입구의 아임계 불안정성 연구)

  • Shin, Phil-Kwon;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.29-36
    • /
    • 2004
  • Supersonic inlet buzz can be defined as unstable subcritical operation associated with fluctuating internal pressures and a shock pattern oscillating about the inlet entrance. The flow pulsations could result in flameout in the combustor or even structural damage to the engine. An experimental study was conducted to investigate the phenomenon of supersonic inlet buzz on axisymmetric, external-compression inlet. An inlet model with a cowl lip diameter of 30mm was tested at a free stream Mach number of 2.0. Subcritical instability was investigated by considering the frequency of pressure pulsation and shock wave structure at the inlet entrance. The results obtained show that total pressure recovery ratios were varied from 0.42 to 0.78, and capture area ratio from 0.34 to 0.98. The frequency of the subcritical flow increased with decrease in capture area ratios. Frequency was measured at $224{\sim}240Hz$.

Oscillatory Features of Supersonic Impinging Jet Flows; Effects of the Nozzle Pressure Ratio and Nozzle Plate Distance (노즐 압력비와 충돌면까지의 거리 변화에 따른 초음속 충돌 제트 유동의 진동 특성)

  • Kim S. I.;Park S. O.;Lee K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.154-159
    • /
    • 2004
  • Numerical simulations of supersonic impinging jet flows are carried out using the axisymmetric Navier-Stokes code. This paper focuses on the oscillatory flow features associated with the variation of the nozzle pressure ratio and nozzle-to-plate distance. Frequencies of the surface pressure oscillation from computational results are in accord with the measured impinging tones for various cases of nozzle-to-plate distance. The variation of this frequency with distance show a staging behavior. Computed results for the case of nozzle pressure ratio variation for a fixed nozzle-to-plate distance also demonstrate a staging behavior. These two seemingly different staging behaviors are found to obey the same frequency-distance characteristics when the frequency and the distance are normalized by using the length of the shock cell.

  • PDF

EVELOPMENT OF AXISYMMETRIC MULTI-SPECIES GH EQUATION FOR HYPERSONIC RAREFIED FLOW ANALYSES (극초음속 희박유동 해석을 위한 축대칭 다화학종 GH 방정식의 개발)

  • Ahn, J.W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.84-91
    • /
    • 2008
  • Generalized hydrodynamic (GH) theory for multi-species gas and the computational models are developed for the numerical simulation of hypersonic rarefied gas flow on the basis of Eu's GH theory. The rotational non-equilibrium effect of diatomic molecules is taken into account by introducing excess normal stress associated with the bulk viscosity. The numerical model for the diatomic GH theory is developed and tested. Moreover, with the experience of developing the dia-tomic GH computational model, the GH theory is extended to a multi-species gas including 5 species; O$_2$, N$_2$, NO, O, N. The multi-species GH model includes diffusion relation due to the molecular collision and thermal phenomena. Two kinds of GH models are developed for an axisymmetric flow solver. By compar-ing the computed results of diatomic and multi-species GH theories with those of the Navier-Stokes equations and the DSMC results, the accuracy and physical consistency of the GH computational models are examined.

  • PDF

EVELOPMENT OF AXISYMMETRIC MULTI-SPECIES GH EQUATION FOR HYPERSONIC RAREFIED FLOW ANALYSES (극초음속 희박유동 해석을 위한 축대칭 다화학종 GH 방정식의 개발)

  • Ahn, J.W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.84-91
    • /
    • 2008
  • Generalized hydrodynamic (GH) theory for multi-species gas and the computational models are developed for the numerical simulation of hypersonic rarefied gas flow on the basis of Eu's GH theory. The rotational non-equilibrium effect of diatomic molecules is taken into account by introducing excess normal stress associated with the bulk viscosity. The numerical model for the diatomic GH theory is developed and tested. Moreover, with the experience of developing the dia-tomic GH computational model, the GH theory is extended to a multi-species gas including 5 species; $O_2,\;N_2$, NO, O, N. The multi-species GH model includes diffusion relation due to the molecular collision and thermal phenomena. Two kinds of GH models are developed for an axisymmetric flow solver. By compar-ing the computed results of diatomic and multi-species GH theories with those of the Navier-Stokes equations and the DSMC results, the accuracy and physical consistency of the GH computational models are examined.

  • PDF

외부압축 초음속 흡입구에서 Spike-Tip과 Cowl-Lip의 형상에 따른 흡입구 성능에 대한 수치해석적 연구

  • Jo, Gyeong-Jun;Lee, Ji-Hong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.612-617
    • /
    • 2015
  • 초음속 흡입구는 고속 비행에서 발생하는 충격파를 이용하여 제트엔진 내부에 유입되는 공기를 압축시키는 구조로써 주로 램제트와 스크램제트 엔진에 적용되어 연구개발이 진행되어 왔으며 현재는 미사일의 추진체 개발에도 응용되고 있다. 초음속 영역에서의 흡입구는 cone 모양의 스파이크 구조를 통해 경사충격파가 생성되어 외부에서의 공기압축을 먼저 거치게 된다. 본 연구에서는 EDISON CFD를 이용하여 외부압축 초음속 흡입구 주위의 공기유동을 해석하고 Cubbison, R.W.의 풍동실험 결과와 비교 분석하였다. 초음속 흡입구 주위의 유동을 2D 축대칭 압축성 유동으로 가정하고 EDISON CFD의 2D_Comp_P 솔버를 사용하여 수치해석을 수행하였다.

  • PDF

SIMULATION OF CAVITATING FLOW PAST CYLINDERS WITH STRONG SIDE-FLOW (측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석)

  • Lee, B.W.;Park, W.G.;Lee, K.C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.78-85
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

Four-Parameter Study on the Jet Regurgitnant Mode of Resonant Tube (공진 관의 토출 모드에 대한 네 가지 매개 변수 연구)

  • Chang Se-Myong;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.255-258
    • /
    • 2000
  • 초음속 유동장 내에 설치된 끝이 막힌 관에 의해 발생하는 공진 현상에는 스크리치 모드 (jet screech mode)와 토출 모드 (jet regurgitant mode)가 있다 이중 토출 모드는 원리상 음향학적 공진과 밀접한 관련이 있다. 본 연구에서는 경계 조건으로, 주어진 강도와 주파수를 갖는 마하 수의 진동을 통하여 압축성 유동장을 가진하는 개념적 모델을 통하여 공진 현상을 모사한다. 비선형 효과의 탐구를 위해 축대칭 오일러 방정식을 수치적으로 풀이하면서, 4 가지의 주요한 파라메터들 (가진 강도, 가진 주파수, 진 동부와 관 사이의 거리, 관의 깊이)을 추출하고 이에 대한 영향을 연구하였다. 또한 비선형 유동 효과에 의해 발생하는, 고전 이론에 의해 예측된 공진 주파수와의 차이를 정량적으로 나타내고 그 원인을 고찰하였다.

  • PDF

Numerical Investigation for Drag Prediction of an Axisymmetric Underwater Vehicle with Bluff Afterbody (기저부를 갖는 축대칭 수중운동체의 저항예측에 관한 수치적 연구)

  • Kim, Min-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.372-377
    • /
    • 2010
  • The objective of this study is to predict the drag of an axisymmetric underwater vehicle with bluff afterbody using CFD. FLUENT, commercial CFD code, is used to simulate high Reynolds number turbulent flows around the vehicle. The computed drag coefficients are compared to available experimental data at various Reynolds numbers. Four widely used two-equation turbulence models are investigated to evaluate their performance of predicting the anisotropic turbulence in a recirculating flow region, which is caused by flow separation arising from the base of the vehicle. The simulations with Realizable ${\kappa}-{\varepsilon}$ and ${\kappa}-{\omega}$ SST turbulence models predict the anisotropic turbulent flows comparatively well and the drag prediction results with those models show good agreements with the experimental data.

Numerical Analysis of Turbulent Combustion of a Kerosene/Oxygen Coaxial Injector with a Recess (리세스가 있는 케로신/산소 동축 분사기의 난류 연소 유동 해석)

  • Choi, Jeong-Yeol;Shin, Jae-Ryul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.77-78
    • /
    • 2011
  • A multi-step quasi-global mechanism is developed for the kerosene/oxygen combustion analysis including dissociation products. Reaction constants of the global reaction are determined to have agreement with experimental data. The mechanism is used for the numerical analysis of the combustion flow field of the kerosene/oxygen shear coaxial injector. The results from high-resolution numerical analysis confirmed qualitatively that the recess enhance the fuel/air mixing and combustion efficiency by the increased flow instabilities.

  • PDF

Numerical Computations of Cryogenic Flows around Turbopump Inducer (터보펌프 인듀서 주변 극저온 유동에 대한 수치해석 연구)

  • Min, D.;Kim, H.;Kim, C.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.187-195
    • /
    • 2012
  • This paper deals with numerical computations of cryogenic flows around turbopump inducer. Firstly, we introduce numerical methods to compute compressible/incompressible cryogenic two-phase flow. As a validation problem, computation results of 2 dimensional/axi-symmetric cryogenic flow will be presented. In this process, various cavitation model will be compared. Finally, numerical simulation of 3 dimensional turbopump inducer will be presented.

  • PDF