• Title/Summary/Keyword: 추천 성과

Search Result 1,717, Processing Time 0.026 seconds

A Collaborative Recommendation Based on Neural Networks Using the Clustering (클러스터링을 이용한 신경망 기반 협력적 추천)

  • 김은주;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.343-345
    • /
    • 2002
  • 개인화를 위한 협력적 추천의 대표적인 방법인 최근접 이웃 방법은 적용이 쉽지만, 사용자의 선호도 정보가 적을 경우 회소성(sparsity)문제와 사용자 수가 많은 경우 수행 속도가 느려지는 범위성(Scalability)문제 그리고 사용자간의 가중치가 결여되었다는 점에서 추천의 정확성이 떨어진다. 신경망 기반 추천은 자료의 유형에 상관없이 데이터의 처리가 용이하고, 사용자간의 가중치를 학습할 수 있으며, 내용 정보, 인구통계학적 정보 등을 입력 노드에 추가함으로써 희소성 문제를 해결할 수 있으나. 범위성 문제는 존재한다. 따라서 본 논문에서는 최근접 이웃 방법으로 클러스터링 한 유사한 사용자 또는 항목들을 고려한 신경망 기반 추천 방법을 제안하여 범위성 문제를 최소화시킴으로써 추천의 성능을 향상시키고 있다. 제안한 추천 방법의 타당성을 보이기 위해 EachMovie데이터를 이용하여 기존 신경망 추천과 비교 실험하여 성능을 분석한다.

  • PDF

유비쿼터스 환경에서의 매장 추천을 위한 추천시스템 개발

  • Kim, Jae-Gyeong;Chae, Gyeong-Hui
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.246-254
    • /
    • 2007
  • 최근 유비쿼터스 환경이 대두됨에 따라 정보의 밀도가 높아지고 있으며, 기업에서는 고객이 제품을 구매함과 동시에 고객의 정보를 저장하여 활용할 수 있게 되었다. 이와 같은 환경은 고객의 요구사항을 사전에 미리 파악하여 적절한 시점과 상황에 맞는 정보를 전달할 수 있도록 하는 추천시스템에 대한 필요성을 증대시켰으며, 다양한 영역에서 추천시스템과 관련된 연구들이 활발하게 이루어지고 있다. 지금까지의 추천시스템은 주로 제품 중심으로 논의되어 왔으나, 유비쿼터스 시장 환경에서는 매장에 대한 논의가 필요하게 되었다. 이는 고객이 다양한 매장을 방문할 수 있으며, 동일한 제품이라도 여러 매장에 동시에 존재할 수 있고, 매장 간의 동선이나 매장의 위치 및 분위기, 제품의 품질이나 가격 등에 대한 개인 선호도에 따라 같은 제품이라도 선호하는 매장은 다를 수 있기 때문이다. 따라서 본 연구에서는 고객의 선호도를 기반으로 유비쿼터스 시장 환경에 적합한 매장 추천시스템을 제안하고자 한다. 매장 추천시스템은 협업 필터링을 기반으로 하고 있으며, Apriori 알고리즘을 이용하여 관련성이 높은 매장들의 집합을 찾아 추천한다. 이 시스템은 기업보다는 고객 중심의 서비스를 제공해 줌으로써 고객의 쇼핑 효율성을 제고시킬 뿐 아니라 장기적인 관점에서 시장 활성화에 기여할 수 있을 것으로 기대한다.

  • PDF

The Effects of Perceived Netflix Personalized Recommendation Service on Satisfying User Expectation (지각된 넷플릭스 개인화 추천 서비스가 이용자 기대충족에 미치는 영향)

  • Jeong, Seung-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.164-175
    • /
    • 2022
  • The OTT (Over The Top) platform promotes itself as a distinctive competitive advantage in that it allows users to stay on the platform longer and visit more often through a Personalized Recommendation Service. In this study, the characteristics of the Personalized Recommendation Service are divided into three categories: recommendation accuracy, recommendation diversity, and recommendation novelty. Then proposed a research model which affects the usefulness of users to recognize recommendation services by each characteristics and leads to satisfaction of expectations. The result of conducting an online survey of 300 people in their 20s and 30s who subscribe Netflix shows that the perceived usefulness increased when the accuracy, variety, and novelty of Netflix's Recommendation Service were high. It was also confirmed that high perceived usefulness leads to satisfaction of expectations before and after Netflix use. The derived research results can confirm the importance of evaluating the personalized recommendation service in terms of user experience and provide implications for ways to improve the quality of recommendation services.

Content based recommendation in TV environment (내용 기반 추천기법의 TV 환경 적용에 관한 연구)

  • 유상원;이홍래;이형동;김형주
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.797-799
    • /
    • 2003
  • 다양한 분야를 대상으로 추천기법에 관한 연구 및 적용이 이루어지고 있다. 전자 상거래 분야에서 소비자가 선호할만한 상품을 추천하거나 영화 관련 사이트에서 볼만한 영화를 추천해주는 것들이 대표적인 예이다. TV 프로그램 또한 채널의 수가 수 백개 이상으로 늘어남에 따라 추천의 필요성이 제기되고 있다. 본 연구에서는 TV 프로그램들을 대상으로 하는 추천 시스템을 구현하였다. 추천 기법은 내용 기반 방식으로 이루어져 있으며 실험을 통해 내용기반 방식이 TV환경에서 가지는 효용성을 알아보고 적용 가능성을 타진해 보았다.

  • PDF

Feasibility Study on Cross-Product Category User Profiling in Collaborative Filtering Based Personalization (협업 필터링 기반 개인화에서의 상품군 중립적 사용자 프로파일링 타당성 검토)

  • Kim, Jong-Woo;Park, Soo-Hwan;Lee, Hong-Ju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.257-263
    • /
    • 2005
  • 초기에 하나의 상품 카테고리만을 다루던 전자상거래 사이트들이 브랜드 확립 후에 다른 상품 카테고리까지 확대해 나가는 모습을 많이 보아왔다. 고객이 아직 방문하지 않은 신규 상품 카테고리의 상품에 대하여 기존 상품 카테고리에서 만들어진 사용자 프로파일을 활용하여 개인화된 추천을 할 수 있다면, 고객이 다양한 상품 카테고리를 방문하도록 유도할 수 있을 것이다. 하지만 일반적으로 전자상거래 사이트에서는 상품 카테고리별로 사용자의 선호도를 파악하여 개인화된 추천을 수행하기 때문에, 해당 카테고리 내 상품의 구매나 방문 기록이 없다면 개인화된 추천을 수행하기가 어렵다 . 본 논문에서는 협업 필터링을 통해 신규 상품카테고리 내의 상품을 추천하기 어려운 고객들을 대상으로 기존의 사용자 선호도 데이터를 활용하여 신규 상품 카테고리 내의 상품을 추천하는 방안의 타당성을 살펴보도록 한다. 즉, 기존 사용자의 특정상품 카테고리 선호도 데이터를 통해 사용자간 유산도를 계산하고, 이를 추천하려는 타 상품 카테고리 내의 상품들에 대한 예측 선호도 계산에 활용 타당성을 살펴본다. 이를 실증적으로 검토하기 위해서, Yes24 사이트의 서적, 음반, DVD 3개의카테고리 내의 상품을 방문한 웹 패널 데이터를 이용하여 타당성 분석을 수행하였다. 분석 결과, 동일 상품 카테고리 내의 선호도 정보를 가지고 현업 필터링을 수행하는 것보다는 추천 성과가 낮았지만 활용할만한 추천 성과를 보였으며, 활용하는 상품 카테고리와 예측하는 상품 카테고리별로 추천성과가 상이했다.

  • PDF

Understanding the Performance of Collaborative Filtering Recommendation through Social Network Analysis (소셜네트워크 분석을 통한 협업필터링 추천 성과의 이해)

  • Ahn, Sung-Mahn;Kim, In-Hwan;Choi, Byoung-Gu;Cho, Yoon-Ho;Kim, Eun-Hong;Kim, Myeong-Kyun
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.2
    • /
    • pp.129-147
    • /
    • 2012
  • Collaborative filtering (CF), one of the most successful recommendation techniques, has been used in a number of different applications such as recommending web pages, movies, music, articles and products. One of the critical issues in CF is why recommendation performances are different depending on application domains. However, prior literatures have focused on only data characteristics to explain the origin of the difference. Scant attentions have been paid to provide systematic explanation on the issue. To fill this research gap, this study attempts to systematically explain why recommendation performances are different using structural indexes of social network. For this purpose, we developed hypotheses regarding the relationships between structural indexes of social network and recommendation performance of collaboration filtering, and empirically tested them. Results of this study showed that density and inconclusiveness positively affected recommendation performance while clustering coefficient negatively affected it. This study can be used as stepping stone for understanding collaborative filtering recommendation performance. Furthermore, it might be helpful for managers to decide whether they adopt recommendation systems.

A User based Collaborative Filtering Recommender System with Recommendation Quantity and Repetitive Recommendation Considerations (추천 수량과 재 추천을 고려한 사용자 기반 협업 필터링 추천 시스템)

  • Jihoi Park;Kihwan Nam
    • Information Systems Review
    • /
    • v.19 no.2
    • /
    • pp.71-94
    • /
    • 2017
  • Recommender systems reduce information overload and enhance choice quality. This technology is used in many services and industry. Previous studies did not consider recommendation quantity and the repetitive recommendations of an item. This study is the first to examine recommender systems by considering recommendation quantity and repetitive recommendations. Only a limited number of items are displayed in offline stores because of their physical limitations. Determining the type and number of items that will be displayed is an important consideration. In this study, I suggest the use of a user-based recommender system that can recommend the most appropriate items for each store. This model is evaluated by MAE, Precision, Recall, and F1 measure, and shows higher performance than the baseline model. I also suggest a new performance evaluation measure that includes Quantity Precision, Quantity Recall, and Quantity F1 measure. This measure considers the penalty for short or excess recommendation quantity. Novelty is defined as the proportion of items in a recommendation list that consumers may not experience. I evaluate the new revenue creation effect of the suggested model using this novelty measure. Previous research focused on recommendations for customer online, but I expand the recommender system to cover stores offline.

Two-step Clustring Method Using Time Schema for Performance Improvement in Recommender System (시간스키마 기법 2단계 클러스터링 적용 추천시스템의 성능 향상)

  • Kim Ryong;Bu Jong-Su;Hong Jong-Kyu;Park Won-Ik;Kim Young-Kuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.205-207
    • /
    • 2005
  • 기존의 추천 시스템들은 사용자 수가 증가함에 따라 추천시간이 증가하는 확장성(Scalability) 문제가 있으며, 새로운 고객의 경우 선호도 정보가 부족하여 추천 정확도가 저하되는 희박성(Saparsity) 문제가 있다. 본 논문에서는 고객의 기본 프로파일 정보 중 가장 변별력이 있는 성과 나이에 대한 그룹을 생성하고 클러스터링 함으로써 집단 내 선호 상품을 우선적으로 추천하는 1단계 클러스터링 방법을 사용하여 새로운 고객의 희박성 문제를 해결 했으며, 추천결과에 따른 피드백을 받아 시간 흐름에 따른 선호 경향을 클러스터링 하는 시간스키마 방법을 적용한 2단계 클러스터링 방법을 사용함으로써 확장성 문제를 해결함은 물론 예측 정확도를 높일 수 있는 방법을 제안한다.

  • PDF

Sequence-Based Travel Route Recommendation Systems Using Deep Learning - A Case of Jeju Island - (딥러닝을 이용한 시퀀스 기반의 여행경로 추천시스템 -제주도 사례-)

  • Lee, Hee Jun;Lee, Won Sok;Choi, In Hyeok;Lee, Choong Kwon
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.45-50
    • /
    • 2020
  • With the development of deep learning, studies using artificial neural networks based on deep learning in recommendation systems are being actively conducted. Especially, the recommendation system based on RNN (Recurrent Neural Network) shows good performance because it considers the sequential characteristics of data. This study proposes a travel route recommendation system using GRU(Gated Recurrent Unit) and Session-based Parallel Mini-batch which are RNN-based algorithm. This study improved the recommendation performance through an ensemble of top1 and bpr(Bayesian personalized ranking) error functions. In addition, it was confirmed that the RNN-based recommendation system considering the sequential characteristics in the data makes a recommendation reflecting the meaning of the travel destination inherent in the travel route.

A Large Number of Consumer Recommendations? or A Small Number of Friend Recommendations? : Purchasing Decision Making based on SNS (다수의 대중추천인가? 소수의 지인추천인가? : 소셜 네트워크 기반의 구매의사결정)

  • Shim, Seon-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.3
    • /
    • pp.15-41
    • /
    • 2012
  • Recently, there happens many purchasing cases encouraged by friends' recommendation in SNS (Social Network Service). This study investigates the effect of friend recommendation on consumers' purchasing heuristic. For this purpose, we compare the effect of friend recommendation with consumer recommendation in terms of trustworthy, specialty, relevancy. Usually, the frequency of friend recommendation is far lower than that of consumer recommendation. Hence, we examine how the effect of information source (friend recommendation or consumer recommendation) is moderated by the frequency of recommendation, as well. As results, this study finds out that, under the same frequency, friend recommendation does not have significantly stronger effect on the purchasing heuristic, although friend recommendation is evidenced as one of significant heuristic inducers. However, in terms of trustworthy, friend recommendation is significantly superior to the consumer recommendation. Moreover, under sufficiently higher frequency, friend recommendation works as better heuristic factor than consumer recommendation. The results deliver managerial implications in the perspective of understanding consumers' purchasing decisions and responding strategies of firms.