• Title/Summary/Keyword: 추천 성과

검색결과 1,717건 처리시간 0.027초

속성추출을 이용한 협동적 추천시스템의 개발 (Development of a Collaborative Recommendation System using feature selection)

  • 유상종;권영식
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2002년도 추계학술대회
    • /
    • pp.467-472
    • /
    • 2002
  • 전자상거래의 급속한 발달로 인하여 많은 상품이 거래가 되로 있다. 기업은 상품들 가운데서 적절한 상품을 고객에게 추천하기 위해서 추천시스템을 개발을 하였다. 그러나 사용자와 고객의 수가 급증하면서 추천을 위해서 많은 시간과 비용이 들게 되었다. 본 논문에서는 이러한 확장성의 문제점을 해결하기 위해서 속성추출방법을 추천시스템에 적용하여 추천의 시간을 단축하여 확장성의 문제를 해결하고자 개선된 추천시스템을 개발했다. 개선된 추천시스템의 추천속도는 기존의 추천시스템에 비하여 빠른 추천이 가능하게 되었다. 이로 인해 확장성의 문제를 해결할 수 있게 되었다.

  • PDF

세렌디피티 지표를 이용한 추천시스템의 품질 평가 (Evaluating the Quality of Recommendation System by Using Serendipity Measure)

  • 체렌돌람;신택수
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.89-103
    • /
    • 2019
  • 최근 추천시스템의 품질평가 관점에서 이에 대한 다양한 연구들이 진행되고 있다. 추천시스템은 기본적으로 사용자들에게 특정 아이템에 대한 개인화된 추천을 제공하는데 목적이 있으며, 대부분의 추천시스템은 항상 사용자 또는 아이템과 가장 관련 있는 아이템을 추천한다. 그리고 이러한 추천시스템의 성과는 전통적으로 다양한 예측정확도 등에 초점을 두어 왔다. 그러나, 추천시스템은 예측가능성 차원에서 정확해야 할 뿐만 아니라 사용자들에게 유용해야 한다. 특히 최근의 추천시스템에 대한 연구로서, 추천시스템의 평가기준에 속하는, 추천시스템에 대한 사용자 만족도(품질)는 추천시스템이 얼마나 정확하게 추천하느냐 뿐만 아니라 사용자의 의사결정에 얼마나 충분히 도움이 되는지와 관계가 깊다. 예를 들어, 특히 높은 수준의 세렌디티피한 추천은 사용자들이 뜻밖의 아이템이면서 흥미로운 아이템을 찾는데 도움이 된다. 여기서, 세렌디피티란 추천 아이템이 사용자에게 매력적인 동시에 뜻밖의(비기대성의) 아이템인 정도를 의미한다. 본 연구는 추천시스템의 성과를 나타내는 세렌디피티 지표를 추천시스템에 적용하여 추천시스템의 품질을 평가하는 것을 목표로 한다. 본 연구에서는 세렌디피티 지표는 관련성(매력)이 있는 동시에 뜻밖인(비기대성의) 아이템을 추천하는 정도로 정의하고, 이 세렌디피티 지표를 측정하기 위해, 추천시스템이 사용자들에게 예상치 못한 유용한 아이템을 찾을 수(또는 추천할 수) 있는 정도를 평가하였다. 본 연구의 주요 실증분석결과로는, 아이템기반 협력 필터링 기법이 사용자기반 협력 필터링 기법보다 더 높은 세렌디피티값을 가지며, 따라서, 추천시스템의 품질평가 차원에서 아이템기반 협력 필터링 기법은 사용자기반 협력 필터링 기법보다는 더 좋은 추천 품질을 갖고 있음을 보여 주었다.

개인화된 상품추천을 위한 협동적 필터링에서의 데이터 선정과 추천 성과간의 관계 (Relationship between Data Selection and Prediction Performance in Collaborative Filtering)

  • 이홍주;김종우;박성주
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.347-350
    • /
    • 2004
  • 전자상거래와 고객관계관리에서 고객의 개인화를 위해 사용되는 협동적 필터링 방안은 고객이 상품에 대해 표시한 선호도에 기반을 두어 선호도가 유사한 사용자를 찾고, 유사한 사용자의 선호도를 활용하여 추천할 상품을 선정하는 방안이다. 고객간의 유사도 계산과 상품에 대한 선호도 계산을 위한 다양한 방안들의 계산식에 대해서는 명확하게 정의되어 있으나, 이에 활용되는 데이터의 선정에 대해서는 명확한 규정이나 가이드라인이 존재하지 않는다. 즉, 몇 번 이상의 선호도를 표시한 사용자를 대상으로 추천을 수행할 것인지, 혹은 몇 번 이상 선호도가 표시된 상품을 추천에 활용할 것인지와 같은 데이터 선정에 활용되는 계수와 협동적 필터링의 추천 성과간의 관계에 대한 연구는 아직 부족하다. 본 연구에서는 협동적 필터링의 연구에 많이 활용되는 EachMovie 데이터를 가지고 협동적 필터링의 계수와 추천 성과간의 관계에 대해 실험적으로 연구하였다. 첫 번째는 몇 번 이상 선호도를 표시한 사용자를 협동적 필터링에 활용하는 것이 추천 성과를 높일 수 있는지에 대해 연구하였으며, 두 번째는 몇 번 이상 선호도가 표시된 상품을 고객에게 추천하는 것이 협동적 필터링의 추천 성과를 높일 수 있는가에 대한 연구를 수행하였다. 계수와 추천 성과간의 관계에 대한 두 가지 실험에서 선호도 표시의 한계가치(marginal value)가 점진적으로 감소하는 것을 볼 수 있었다. 본 연구의 결과는 협동적 필터링의 수행을 위한 효과적인 데이터의 선정에 도움을 줄 수 있을 것이다.

  • PDF

카테고리 정보를 이용한 추천 성능의 향상 (Improvements of Recommendation Performance with Categorical Information)

  • 김춘호;김준태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.398-400
    • /
    • 2003
  • 추천 시스템은 사용자의 아이템에 대한 선호도를 예측함으로써. 사용자에게 적합한 아이템을 추천한다. 이러한 추천 시스템은 희소성과 확장성의 문제를 안고 있다. 희소성이란 사용자의 선호도 예측의 토대가 되는 정보의 부족으로 인하여 추천 아이템의 범위가 제한되는 것이고, 확장성이란 사용자나 아이템의 수가 증가함에 따라 추천 시간이 증가하는 것이다. 본 논문에서는 아이템의 카테고리 정보를 이용한 다중 레벨 연관규칙을 선호도 예측에 적용하여 희소성과 확장성의 문제를 완화하고자 하였다. 연관규칙을 이용하여 선호도 예측을 위한 모델을 구축하여 확장성을 해결하고, 다중 레벨 연관규칙을 이용하여 추천 아이템의 범위를 확장할 수 있었다. 단일 레벨만을 사용한 방법과 비교한 결과, 다중 레벨을 사용한 방법이 좋은 성능을 보임을 확인할 수 있었다.

  • PDF

OTT 개인화 추천 서비스에서의 개인 정보제공 의도에 미치는 선행요인 연구: 5요인 성격모형의 적용 (Precedents Affecting the Intention to Disclose Personal Information in Personalized Recommendation Service of OTT: Application of Big-Five Personality Model)

  • 김유진;이형석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.209-210
    • /
    • 2023
  • 본 연구에서는 OTT 개인화 추천 서비스에서 5요인 성격이론을 적용하여 사용자들의 정보 프라이버시 염려에 관한 영향을 미치는 요인을 파악하고 프라이버시 염려와 개인정보 제공의도와의 관계에 관한 가설을 도출하였다. OTT 개인화 추천 서비스의 정보 프라이버시 염려에 영향을 미치는 요인으로 성격이론인 친화성, 정서적 불안정성, 성실성, 외향성, 경험에 대한 개방성 다섯 가지 요인을 도출하였으며, OTT 추천 서비스의 특성인 추천서비스의 정확성, 추천서비스의 다양성, 추천 서비스의 신기성 세 가지 요인을 도출하였다. 본 연구는 5요인 성격이론을 OTT 개인화 추천서비스 연구에 적용하였다는 데 의의가 있을 뿐만 아니라, OTT 기업들이 사용자의 정보 프라이버시 염려 행동을 이해하는 데에 도움을 줄 것으로 기대한다.

  • PDF

개인화를 위한 추천시스템 알고리즘에 관한 연구

  • 강현철;한상태;신연주
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.307-311
    • /
    • 2003
  • 개인화된 추천시스템(recommendation system)은 자동화된 정보 필터링 기술을 적용하여 고객의 취향에 맞는 아이템(상품, 기사, 컨텐츠 등)을 추천하는 시스템이다. 이러한 추천시스템에서 가장 중요한 것은 고객의 특성을 정확히 파악하여 가장 적절한 아이템을 추천해 줄 수 있는 능력이라고 할 수 있다. 본 연구에서는 추천시스템을 위해 제안된 여러 알고리즘들을 소개하고 그 특징들을 비교하였으며, 연관성규칙발견과 군집분석을 이용한 추천시스템 알고리즘을 실제 자료에 적용하여 그 결과를 살펴보았다.

  • PDF

사용자 군집을 이용한 개인화 된 웹 페이지 추천 (The personalized web page using the Users clustering method)

  • 이은경;이기현;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.241-243
    • /
    • 2002
  • 기존의 웹 로그를 이용한 추천 System에서의 추천 문서 집합은 웹 페이지의 연관성과 웹 문서 사이의 거리를 이용하여 사용자들에게 추천 문서 집합을 제공해 주는 방식을 사용하였다. 이 방법에 의하면 추천 폐이지로 제공되는 페이지는 사용자별 연관성이 고려되지 않으므로 모든 사용자들이 웹 페이지의 연관성안을 이용한 폐이지를 추천 받는다. 따라서 처음 웹사이트를 방문한 새로운 사용자들에게는 추천해주는 폐이지는 사용자가 보고 있는 웹 페이지의 연관성에 의한 웹 페이지만을 추천 받게 되므로 생각하지 못했던 폐이지나 비슷한 취향을 가진 사용자들이 방문을 했던 페이지에 대해서는 추천 받지 못한다는 문제점을 가지고 있다. 따라서 본 논문에서는 동일한 폐이지를 방문한 사용자별로 클러스터링 하여 같은 그룹에 속한 사용자들의 브라우징 패턴 정보를 발견, 분석화 하여 DB에 저장하였으며, 새로운 사용자에 대해서 웹 페이지 추천 집합을 제공하였다.

  • PDF

협업필터링의 신규고객추천 및 희박성 문제 해결을 위한 중심성분석의 활용 (Applying Centrality Analysis to Solve the Cold-Start and Sparsity Problems in Collaborative Filtering)

  • 조윤호;방정혜
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.99-114
    • /
    • 2011
  • 본 연구에서는 협업필터링의 두 가지 근본적인 문제인 신규고객 추천(cold-start recommendation)과 희박성(sparsity) 문제를 해결하고자 한다. 먼저, 사회 네트워크 분석에서 가장 많이 활용 되고 있는 세 가지 중심성 지표인 연결중심성(degree centrality), 근접중심성(closeness centrality), 매개중심성(betweenness centrality)을 결합한 다양한 중심성 지표들을 만든 후 이를 기반으로 신규고객의 잠재 이웃고객을 찾고 그 이웃고객들의 구매정보를 이용하여 신규고객에게 상품을 추천하는 새로운 방법을 제시한다. 다음으로 희박성 문제를 해결하기 위하여, 구매정보가 충분한 고객에게는 협업필터링을, 그렇지 않은 고객에게는 협업필터링 대신 제시한 신규고객 추천방법을 적용하는 하이브리드 추천 방법을 제안한다. 제시한 추천 방법의 효과성을 평가하기 위하여 국내 유명 백화점 중의 하나인 H백화점의 구매 트랜잭션 데이터를 사용하여 실험하였다. 실험결과로부터 근접중심성과 매개중심성을 결합한 지표를 신규고객 추천 시에 사용할 경우 추천 성능이 가장 우수한 것으로 판명되었으며, 제안한 하이브리드 추천 방법이 기존의 협업필터링의 성능을 상당히 개선함으로써 희박성 문제를 해결할 수 있는 새로운 대안임이 입증되었다.

대리자를 이용한 군집화 기반 사용자 적응적 추천 모델 (User Adaptive Recommendation Model Based on User Clustering using Proxies)

  • 류상현;송창환;장현수;엄영익
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.39-42
    • /
    • 2009
  • 사용자 적응형 추천 시스템의 목적은 사용자의 선호도와 행동 정보 등을 분석, 분류하여 그를 바탕으로 각 사용자가 필요로 하거나 선호 할 만한 서비스를 사용자에게 추천하여 사용자 편리성을 높이는 것이다. 그러나 기존의 추천 시스템은 새로운 사용자의 등장이나 새로운 서비스의 등장 시 분석에 많은 시간을 필요로 하거나, 과특성화와 희귀성이라는 특성으로 인한 추천 서비스 단순화 등의 문제점을 안고 있다. 본 논문에서는 새로운 사용자 등장 시 결정 트리를 이용한 분류로 분석시간을 줄이고, 새로운 아이템의 등장 시 분석시간의 감소와 다양한 사용자 중심적인 추천을 위해 대리자를 이용한 사용자 군집화와 추천을 수행하는 새로운 모델을 제시한다. 또한 제안된 모델을 분석하여 위의 문제점들이 어떻게 해결되는지 설명한다.

희박한 고객 활동 데이터에서 최신성 기반 추천 성능 향상 연구

  • 백상훈;김주영;안순홍
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.781-784
    • /
    • 2019
  • 최근 AI를 산업 서비스에 적용하기 위해 많은 회사들이 활발히 연구를 하고 있다. 아마존과 넷플릭스 같은 거대 기업들은 이미 빅데이터와 AI 머신러닝을 이용한 추천 시스템을 구현하였고 아마존은 매출의 35%가 추천에 의해 발생하고 넷플릭스 75%의 사용자가 추천을 통해 영화를 선택한다고 보고되었다. 이러한 두 기업의 높은 추천 효율성의 이유는 협업 필터링(Collaborative filtering)과 같은 다양한 추천 알고리즘과 방대한 상품 및 고객 행동(구매, 시청 등) 데이터 등이 존재하고 있기 때문이다. 기계학습에서 알고리즘 학습을 위한 데이터의 양이 많지 않을 경우 알고리즘의 성능을 보장할 수 없다는 것이 일반적인 의견이다. 방대한 데이터를 가진 기업에서 추천 알고리즘을 적극적으로 활용 및 연구하고 있는 것도 이러한 이유 때문이다. 반면, 오프라인 및 여행사 기반에서 온라인 기반으로 영역을 차츰 확대하고 있는 항공 서비스 고객 데이터의 경우, 산업의 특성상 많은 회원에 비해 고객 1명당 온라인에서 활동하는 이력이 많지 않은 것이 특징이다. 이는, 추천 알고리즘을 통한 서비스 제공에서 큰 제약사항으로 작용한다. 본 연구에서는, 이러한 희박한 고객 활동 데이터에서 최신성 기반의 추천 시스템을 통하여 제약사항을 극복하고 추천 효율을 높이는 방법을 제안한다. 고객의 최근 접속 이력 로그를 시간 기준으로 데이터 셋을 분할하여 추천 알고리즘에 반영하였을 때, 추천된 노선에 대한 고객의 반응을 추천 성능 지표인 CTR(Click-Through Rate)로 측정하여 성능을 확인해 보았다.