• Title/Summary/Keyword: 추천 모형

Search Result 235, Processing Time 0.02 seconds

데이터마이닝과 다중모형조합기법을 이용한 온라인상점 상품추천시스템 개발

  • 이연경;김경재
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.340-348
    • /
    • 2004
  • 온라인상점의 상품추천시스템은 일대일마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 대부분의 상품추천시스템은 시시각각 변화하는 소비자의 기호에 따라 상품을 어떻게 추천할 것인가에 대한 문제에 직면해 있다. 본 연구에서는 급변하는 온라인상점 환경에 탄력적으로 대응하기 위하여 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 제안하는 상품추천시스템은 현재 운영중인 온라인상점 데이터로 프로토타입을 구축하고 실제 소비자에 대한 적용가능성을 검증하였으며, 그 결과 실제 유용할 것으로 확인되었다.

  • PDF

Development of Product Recommender System using Collaborative Filtering and Stacking Model (협업필터링과 스태킹 모형을 이용한 상품추천시스템 개발)

  • Park, Sung-Jong;Kim, Young-Min;Ahn, Jae-Joon
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.83-90
    • /
    • 2019
  • People constantly strive for better choices. For this reason, recommender system has been developed since the early 1990s. In particular, collaborative filtering technique has shown excellent performance in the field of recommender systems, and research of recommender system using machine learning has been actively conducted. This study constructs recommender system using collaborative filtering and machine learning based on stacking model which is one of ensemble methods. The results of this study confirm that the recommender system with the stacking model is useful in aspects of recommender performance. In the future, the model proposed in this study is expected to help individuals or firms to make better choices.

Comparison of deep learning-based autoencoders for recommender systems (오토인코더를 이용한 딥러닝 기반 추천시스템 모형의 비교 연구)

  • Lee, Hyo Jin;Jung, Yoonsuh
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.329-345
    • /
    • 2021
  • Recommender systems use data from customers to suggest personalized products. The recommender systems can be categorized into three cases; collaborative filtering, contents-based filtering, and hybrid recommender system that combines the first two filtering methods. In this work, we introduce and compare deep learning-based recommender system using autoencoder. Autoencoder is an unsupervised deep learning that can effective solve the problem of sparsity in the data matrix. Five versions of autoencoder-based deep learning models are compared via three real data sets. The first three methods are collaborative filtering and the others are hybrid methods. The data sets are composed of customers' ratings having integer values from one to five. The three data sets are sparse data matrix with many zeroes due to non-responses.

데이터 마이닝을 이용한 인터넷 쇼핑몰 상품추천시스템

  • Kim, Gyeong-Jae;Kim, Byeong-Guk
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.258-265
    • /
    • 2005
  • 전자상거래의 확산에 따라 인터넷 쇼핑몰에서의 구매활동은 일반적인 현상이 되었다. 그 결과, 유사한 업종이나 업태의 인터넷 쇼핑몰이 범람하게 되었고 업체들 간의 경쟁도 심화되어 차별화된 서비스를 제공하지 않는 업체는 도태되기 쉬운 상황이다. 본 연구에서는 치열한 경쟁환경 하에서 인터넷 쇼핑몰의 차별화된 마케팅 서비스의 수단으로써 이용되고 있는 상품추천시스템의 개선된 모형을 제시하고자 한다. 본 연구에서 제안하는 모형은 전역 최적화 기법 중의 하나인 유전자 알고리즘을 데이터 마이닝의 도구로 활용한 인터넷 쇼핑몰에서의 개인화된 상품추천시스템 모형이다. 유전자 알고리즘은 추출하기가 어려운 소비자의 성향을 데이터를 통해 추출하고 이에 맞는 상품군을 선택할 수 있도록 해주는 최적화 기법으로 상품추천시스템의 추천엔진으로써 유용할 것으로 기대된다. 본 연구에서는 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.

  • PDF

A Study on Exploration of the Recommended Model of Decision Tree to Predict a Hard-to-Measure Mesurement in Anthropometric Survey (인체측정조사에서 측정곤란부위 예측을 위한 의사결정나무 추천 모형 탐지에 관한 연구)

  • Choi, J.H.;Kim, S.K.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.923-935
    • /
    • 2009
  • This study aims to explore a recommended model of decision tree to predict a hard-to-measure measurement in anthropometric survey. We carry out an experiment on cross validation study to obtain a recommened model of decision tree. We use three split rules of decision tree, those are CHAID, Exhaustive CHAID, and CART. CART result is the best one in real world data.

Multicriteria Movie Recommendation Model Combining Aspect-based Sentiment Classification Using BERT

  • Lee, Yurin;Ahn, Hyunchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.201-207
    • /
    • 2022
  • In this paper, we propose a movie recommendation model that uses the users' ratings as well as their reviews. To understand the user's preference from multicriteria perspectives, the proposed model is designed to apply attribute-based sentiment analysis to the reviews. For doing this, it divides the reviews left by customers into multicriteria components according to its implicit attributes, and applies BERT-based sentiment analysis to each of them. After that, our model selectively combines the attributes that each user considers important to CF to generate recommendation results. To validate usefulness of the proposed model, we applied it to the real-world movie recommendation case. Experimental results showed that the accuracy of the proposed model was improved compared to the traditional CF. This study has academic and practical significance since it presents a new approach to select and use models in consideration of individual characteristics, and to derive various attributes from a review instead of evaluating each of them.

Customer Recommendation Using Customer Preference Estimation Model and Collaborative Filtering (선호도 추정모형과 협업 필터링기법을 이용한 고객추천시스템)

  • Sin, Taek-Su;Jang, Geun-Nyeong;Park, Yu-Jin
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.407-414
    • /
    • 2005
  • 본 연구는 상품추천을 위해 필요한 고객선호도 추정모형을 제안하고, 이러한 선호도 추정결과에 따른 선호도 정보를 이용하여 궁극적으로 상품추천의 성과를 제고시키기 위한 방법을 제시하였다. 즉, 고객의 행동패턴만으로 고객의 제품선호도를 정확히 추정할 수 있는 새로운 선호도 추정모형을 제안하였다. 이 제안모형은 선호도에 영향을 주는 요인들의 상대적인 가중치를 학습을 통해 최적화시킴으로써, 보다 정확한 선호도 평가를 가능하게 해 주다. 한편, 이 모형의 타당성을 검증하기 위해서 본 연구에서는 가상서점 고객들을 대상으로 고객선호도 정보를 수집한 후, 본 제안모형을 적용했을 때의 협업 필터링 성과와 단순선호도 계산식을 이용했을 경우의 성과를 비교 분석하였다. 이에 대한 실증분석결과는 본 제안모형을 적용했을 때의 협업 필터링 성과가 단순 선호도 모형을 적용했을 때의 성과보다 더 우수한 것으로 나타났다.

  • PDF

Customer Recommendation Using Customer Preference Estimation Model and Collaborative Filtering (선호도 추정모형과 협업 필터링기법을 이용한 고객추천시스템)

  • Shin, Taeksoo;Chang, Kun-Nyeong;Park, Youjin
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.4
    • /
    • pp.1-14
    • /
    • 2006
  • This study proposed a customer preference estimation model for production recommendation and a method to enhance the performance of product recommendation using the estimated customer preference information. That is, we suggested customer preference estimation model to estimate exactly customer's product preference with his behavior. This model shows the relationship of customer's behaviors with his preferences. The proposed estimation model is optimized by learning the relative weights of customer's behavior variables to have an effect on his preference and enables to estimate exactly his preference. To validate our proposed models, we collected virtual book store data and then made a comparative analysis of our proposed models and a benchmark model in terms of performance results of collaborative filtering for product recommendation. The benchmark model means a prior preference weighting model. The results of our empirical analysis showed that our proposed model performed better results than the benchmark model.

  • PDF

An Online Review Mining Approach to a Recommendation System (고객 온라인 구매후기를 활용한 추천시스템 개발 및 적용)

  • Cho, Seung-Yean;Choi, Jee-Eun;Lee, Kyu-Hyun;Kim, Hee-Woong
    • Information Systems Review
    • /
    • v.17 no.3
    • /
    • pp.95-111
    • /
    • 2015
  • The recommendation system automatically provides the predicted items which are expected to be purchased by analyzing the previous customer behaviors. This recommendation system has been applied to many e-commerce businesses, and it is generating positive effects on user convenience as well as the company's revenue. However, there are several limitations of the existing recommendation systems. They do not reflect specific criteria for evaluating products or the factors that affect customer buying decisions. Thus, our research proposes a collaborative recommendation model algorithm that utilizes each customer's online product reviews. This study deploys topic modeling method for customer opinion mining. Also, it adopts a kernel-based machine learning concept by selecting kernels explaining individual similarities in accordance with customers' purchase history and online reviews. Our study further applies a multiple kernel learning algorithm to integrate the kernelsinto a combined model for predicting the product ratings, and it verifies its validity with a data set (including purchased item, product rating, and online review) of BestBuy, an online consumer electronics store. This study theoretically implicates by suggesting a new method for the online recommendation system, i.e., a collaborative recommendation method using topic modeling and kernel-based learning.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.