• Title/Summary/Keyword: 추진축계

Search Result 99, Processing Time 0.019 seconds

A study on the calculation of forced axial vibration with damping for the marine diesel engine shafting by the mechanical impedance method (기계적 임피던스법에 의한 박용디젤기관 추진축계의 강제감쇠종진동 계산에 관한 연구)

  • 박현호;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 1987
  • Recently, the problem of the axial vibration for the marine diesel engine shafting has become important due to the increased exciting forces resulting from high supercharging and large output, and the reduced natural frequencies resulting from long stroke and show speed. The effects of the axial vibration on the propulsion shafting induce cracks of the connecting point of crankpin and crankarm, the severe wear of thrust bearing, the fatigue failure of each fixing bolt and jointed parts, the hull and local hull vibrations, and also the wear and the noise due to intense hammering phenomena of thrust collar. Therefore, each classification society requires the calculation of natural frequencies and their amplitudes and also measurements of the forced damped axial vibration. At present, the technical and theoretical level is at the stage of estimating the resonant points and their maximum displacements, but the estimated displacements of the resonant points are not so reliable as the torsional one. In this study, induced stresses and amplitudes of the forced damped axial vibration are calculated. For this purpose, the equation of forced axial vibration with damping for the propulsion shafting is derived and its steady-state response is calculated by the mechanical impedance method. A computer program for above calculations is developed. The measured values are analyzed and the calculated results are compared with the measured ones. They show fairly good agreements and the reliability of developed program is confirmed.

  • PDF

A Study on the Torsional Vibration of propulsion Shafting System with Controllable Pitch Propeller (가변익 프로펠러를 갖는 추진축계의 비틀림진동에 관한 연구)

  • 이돈출
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.626-634
    • /
    • 1998
  • Controllable pitch propeller(CPP) is usually adopted for easy and effective engine controls of a ship in a port. Unfortunately the torsional vibration may occur by a certain variation of engine torque and the major resonance peak may exist within the maximum continuous rating(MCR) In these cases an additional stress concentration on the oil passages such as longitudinal slots notches and circular holes of an oil distributor shaft(ODS) occurs by the torsional vibration of the CPP shaft. In this paper an analysis for the fatigue limit of an ODS system of the 5S70MC engine in a crude oil carrier is done by applying FEM and empirical formulas. Furthermore the additional stress on the ODS is investigated by analyzing the torsional vibration of the shaft system and a control method in which a tuning damper is adopted is introduced in the case of the additional stress exceeds the fatigue limit. The validity of analysis method is verified by comparing the results acquired by an actual measurement of the vibratory torque for the above ODS

  • PDF

Experimental Equipment for Torsional Vibration of Marine Propulsion Shafting (선박용 추진축계 비틀림진동 실험장치의 소개)

  • Kim, S.H.;Kim, J.G.;Lee, D.C.;Park, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.149-153
    • /
    • 2005
  • Marine Propulsion shafting system coupled with medium diesel engine forms multi-degree torsional vibration system which consist of many inertia masses such as crank, flywheel, propeller and sometimes gear system is adopted additionally for the purpose of improving propeller's propulsion efficiency or connecting with PTO/PTI. The periodic excitation torques generated by combustion pressure in cylinder and reciprocating masses induce various kinds of vibrations in this shafting system. If the frequency of this excitation torques is equal to the natural frequency of the shafting, the amplitude of the torsional vibration increases steeply and the damage of crankshaft or gears may be occurred by that. This frequency is called critical speed. When making a plan for shafting system, it is important for this frequency to be expected exactly and not to be in commonly used speed. For this reason, this paper introduces the experimental equipment for torsional vibration of marine propulsion shafting system and describes the theoretic and the experimental methods to look for natural frequencies.

  • PDF

Torsional Free Vibration Analysis of Propulsion Shafting of Training Ship SAEDONGBAEK by Sylvester-Transfer Stiffness Coefficient Mehtod (실베스터-전달강성계수법에 의한 실습선 새동백호 추진축계의 비틀림 자유진동 해석)

  • Kim, Myung-Jun;Wang, Woo-Gyeong;Yeo, Dong-Jun;Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.11-19
    • /
    • 2018
  • In this study, the authors examine the propulsion shafting of the training ship SAEDONGBAEK and perform modeling to analyze the torsional free vibration of the shafting. In this paper, the computational algorithm for analyzing the torsional free vibration of the shafting with a reduction gear is formulated by the sylvester-transfer stiffness coefficient method (S-TSCM) that is a recently developed and a powerful method in free vibration analysis. According to the state of the controllable pitch propeller of the shafting and the temperature of the elastic coupling, the torsional free vibration of the shafting is performed by the S-TSCM. The authors examine the changes of the natural frequencies and natural modes which are the results of the torsional free vibration analysis of the shafting.

Measurement and Assessment on the Shaft Power Measurement of Diesel Engine using Strain Gauge in Marine Vessel (선박에서 스트레인 게이지를 이용한 디젤엔진의 축 동력 측정과 평가)

  • Lee, Don-Chool;Song, Myong-Ho;Kim, Sang-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1152-1161
    • /
    • 2009
  • The power measurement of main propulsion system on the new vessels can be classified with the direct method acquired from the shaft's strain using strain gauge and the indirect method converted and summed from all of cylinders combustion pressure using mechanical or electrical pickup device during the sea trial. This power is fluctuated by external factors which was influenced by various sea motions with long time interval and by internal factors which was influenced by varying torques of torsional vibration and bending moment, due to mis-aligned shaft and whirling vibration with short time interval. In this paper, the statistical analysis method for the shaft power measurement and assessment using strain gauge in marine vessels are introduced. And these are identified by the low speed two stroke diesel engine model and four stroke medium speed diesel engine model including reduction gear.

A Study on Elastic Shaft Alignment Using Nonlinear Soaring Elements (비선형 베어링 요소를 이용한 탄성 추진 축계정렬에 관한 고찰)

  • Choung, Joon-Mo;Choe, Ick-Heung;Shin, Sang-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.259-267
    • /
    • 2005
  • The effects of hull flexibility on shaft alignment are growing as ship sizes are increased mainly for container carrier and LNG carrier. In order to consider hull flexibility on a propulsion shafting system, standardization of ship service conditions is necessary because hull deformation is continuously variable according to ship service conditions. How to summarize ship service conditions is suggested based on practically applicable four viewpoints : hull, engine, loading and sea status. Effects of the external forces acting on a ship propulsion shafting system are generally commented. Several design criteria regulated by classification societies are pointed at issue which seems to have Insufficient technical background. A qualitative verification is carried out to point out the invalidity of the assumption of effective supporting position. In this work, an elastic nonlinear multi-supporting bearing system is introduced as a key concept of the elastic shaft alignment. Hertz contact theory is proved to be more proper one than projected area method in calculation of the nonlinear elastic stiffness of the bearing, The squeezing and oil film pressure calculations in the long journal bearing like an after stern tube bearing are recognized as a necessary process for elastic shaft alignment design.

A Study on the Characteristics of Shaft Electric Motive Force of Controllable Pitch Propeller - Focusing on the M/V Segero - (가변피치 프로펠러의 축기전력 특성에 관한 연구 - 세계로호를 중심으로 -)

  • Park, Kyung-Min;Im, Myeong-Hwan;Choe, Sang-Bom;Ahn, Byong-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.135-140
    • /
    • 2022
  • Most machines are made of several types of . In particular, the shaft system of the ship consists of the brass of the propeller blade and the stainless steel of the shaft. When dissimilar the electrolyte solution of seawater, a voltaic cell and a shaft electromotive force is generated. This electromotive force causes electrical corrosion of the bearing and shaft supporting the shaft system. prevent this corrosion, a shaft grounding system is installed in ships. As for the experimental method, various information acquired by designing a program to periodically measure the electromotive force of the controllable pitchpropeller) system using an A/D converter of NI. This study analyzed the generation and characteristics of accumulator electromotive force for CPP and considered the installation location of the grounding system to remove the accumulator electromotive force.

A Rotary Capacitive-Wireless Power Transfer System for Power Supply of a Wireless Sensor System on Marine Rotating Shaft (선박 회전축의 무선 센서 시스템의 전원 공급을 위한 회전식 정전용량-무선 전력 전송 시스템)

  • Van Ai Hoang;Young Chul Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • In this work, a capacitive wireless power transfer (C-WPT) system is presented for wireless sensor system (WSS) applications in marine propulsion shafts. For a single Q factor on both sides of the coupling capacitor and reactive power removal from the circuit, a double-sided LCLC converter and transformers topology are designed to drive the rotary C-WPT system for WSS on the shaft. Parallel-connected parallel plate rotating capacitors with a capacitance of 170 pF are designed and implemented for the C-WPT system on a snow rotating shaft. In the experimental results, the C-WPT system achieved a transmission efficiency of 66.67% with 7.8 W output power at 3 mm distance and 1 MHz operating frequency. Therefore, it was proved that the fabricated C-WPT system can supply power to the WSS of the rotating shaft.

Forced Vibration Analysis for Duffing's Vibration Systems with the Multi-Degree-of-Freedom Systems (다자유도계를 갖는 듀핑 진동계의 강제진동해석)

  • 전진영;박용남;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 2000
  • As ship's propulsion shafting system has been complicated, many linear methods that have been used until now are not sufficient enough to produce proper solutions and these solutions are ofter unreasonable. So we need to solve nonlinear systems, and many methods for solving nonlinear vibration system have been developed. In this study, the propulsion shafting system was modeled with Duffing's nonlinear vibration system and multi-degree-of-freedom, and analyzed by using Quasi-Newton method. And for the purpose of confirming the reliability of the calculating results for nonlinear forced torsional vibration of the propulsion shafting system, the nonlinear calculated results were compared with the linear calculated ones for ship's propulsion shafting system. In the result, for analysis of the forced torsional vibration of the propulsion systems with nonlinear elements, the modified Newton's method is confirmed reasonable.

  • PDF

Measurement and Assessment of Whirling Vibration using Strain Gage in Small Propulsion Shafting System (소형추진축계에서 스트레인 게이지를 이용한 휘둘림 진동에 대한 계측 및 평가)

  • Kim, Jin-Hee;Kim, June-Sung;Kim, Tae-Un;Lee, Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.527-532
    • /
    • 2011
  • Whirling vibration in severe cases may result in shaft cracking and typically gap sensors are utilized to confirm its values under the outside underwater of ship. The bending stress value causing whirling vibration on the propulsion shafting system of a 40-ton small vessel was verified by theoretical analysis and its vibration measurement. However, because of underwater condition, the accuracy for this measurement method is presumed low. In this study, the strain gauge basic principle and the bending stress calculation method are considered. The relationships are then applied for obtaining the whirling vibration of the 40-ton small vessel. As a result, a new method in estimation of whirling vibration is reached and suggested.

  • PDF