• Title/Summary/Keyword: 추진제(propellant)

Search Result 813, Processing Time 0.02 seconds

The Estimation of Buckling Load of Pressurized Unstiffened Cylindrical Shell Using the Hybrid Vibration Correlation Technique Based on the Experimental and Numerical Approach (실험적/수치적 방법이 혼합된 VCT를 활용한 내부 압력을 받는 원통형 쉘의 좌굴 하중 예측)

  • Lee, Mi-Yeon;Jeon, Min-Hyeok;Cho, Hyun-Jun;Kim, Yeon-Ju;Kim, In-Gul;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.701-708
    • /
    • 2022
  • Since the propellant tank structure of the projectile is mainly subjected to a compressive force, there is a high risk of damage due to buckling. Large and lightweight structures such as propellant tank have a complex manufacturing process. So it requires a non-destructive test method to predict buckling load to use the structure after testing. Many studies have been conducted on Vibration Correlation Technique(VCT), which predicts buckling load using the relationship between compressive load and natural frequency, but it requires a large compressive load to predict the buckling load accurately, and it tends to decrease prediction accuracy with increasing internal pressure in structure. In this paper, we analyzed the causes of the decrease in prediction accuracy when internal pressure increases and proposed a method increasing prediction accuracy under the low compressive load for being usable after testing, through VCT combined testing and FEA result. The prediction value by the proposed method was very consistent with the measured actual buckling load.

Proposal of Pipe Pressure Mode Analysis Method in Propulsion System for Predicting the Pogo of Space Launch Vehicle (우주 발사체의 포고현상 예측을 위한 공급/추진계의 파이프 압력모드 해석 기법 제안)

  • Lee, SangGu;Lee, SiHun;Shin, SangJoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.714-717
    • /
    • 2017
  • Among the factors considered in the design stage of a space launch vehicle using liquid propellant, research has been focused out on the pogo phenomenon, longitudinal dynamic instability. The pogo phenomenon refers to the instability that the longitudinal vibration of the launch vehicle structure causes a change in the pressure and flow rate of the fluids in propulsion system, and this change re-excites the fuselage structure. This mechanism constitutes a closed system to gradually increase the vibration of the launch vehicle. This paper specifically focuses on the dynamic analysis of pressure and flow changes in the propulsion system. Based on the example study of the space shuttle, the acoustic modal analysis of the propulsion system is performed to predict the modes of the supply line causing instability of the fuselage.

  • PDF

Synthesis of Organic salt Oxidizer, Guanidine Dinitramide (유기염 고체산화제 Guanidine Dinitramide의 합성연구)

  • Kim, Woo-Ram;Kwon, Youn-Ja;Jo, Young-Min;Jung, Sun-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.345-351
    • /
    • 2014
  • Dinitramide ($N(NO_2)_2$) salts are one of plausible oxidizing agents for a high efficient propellant. Guanidine dinitramide (GDN) is an organic salt improving its stability against moisture, so that enables massive production and long term storage. Several types of GDN (GDN-1,2,3,4,5) were synthesized using some types of starting materials such as guanidine acetate, chloride, carbonate, nitrate and sulfate. As a result of the experimental work, synthesized GDN from the carbonate salt appeared fairly pure relatively higher yield (99%) than the other samples. The absorption wave length of all prepared GDNs by FTIR were found at 3452, 3402, 3354, 3278, 3208, 1642, 1570, 1492, 1416, 1337, 1179 and $1000cm^{-1}$. DSC analysis found a thermal phase change at $130^{\circ}C$, and indicated exothermic reaction at about $150^{\circ}C$ to $160^{\circ}C$.

A Study on the Chattering under Cryogenic Flow Test of a Oxidizer Shutoff Valve (산화제 개폐밸브의 극저온 유동시험에서 채터링의 고찰)

  • Lee, JoongYoup;Han, SangYeop;Lee, SooYong
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.108-117
    • /
    • 2013
  • The oxidizer shutoff valve of a gas generator controls the mass flow rate of the propellant of a rocket engine using pilot pressure and spring the force of the valve. The developing oxidizer shutoff valve can be shut off if the pilot pressure is removed from the actuator. Therefore, force balancing is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure required to open the poppet and to determine the working fluid pressure at which the valve starts to close. Under cryogenic flow test as a tests level of C.R.T(Control Random Test), the chattering phenomena occurred due to much leakage of a metal seat section. The pressure for chattering of the oxidizer valve is predicted at about 11 bar using force balancing analysis.

Novel Ramjet Propulsion System with H2O2-Kerosene Rocket as an Initial Accelerator (H2O2-케로신 로켓을 초기 가속장치로 갖는 새로운 램젯 추진기관)

  • Park, Geun-Hong;Lim, Ha-Young;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • New concept ramjet propulsion system with liquid bipropellant rocket using "Green Propellant" hydrogen peroxide for launch stage is proposed. In this novel concept, hydrogen peroxide gas generator produces hot oxygen at launch stage and kerosene injects to this jet in combustor. For basic study of this new concept ramjet system, investigation of auto-ignition characteristics and combustion of decomposed hydrogen peroxide and kerosene was conducted. In various test cases, auto-ignition and stable combustion was verified. The combustion temperature of 400°C and Fuel/Oxidizer mixture ratio of 0.6 were the limit of auto ignition. Through the experiment results, the possibility of novel concept combined propulsion system using hydrogen peroxide gas generator is ascertained.

Spray Pattern Analysis of the Injector in a Small Liquid-Rocket Engine (소형 액체로켓엔진 인젝터의 분무패턴 분석)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong;Kim, Sung-Cho;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.146-149
    • /
    • 2006
  • Spray characteristics of an injector employed in mono-propellant hydrazine thrusters were investigated by PIV(particle image velocimetry) and LDA/PDA(laser/phase Doppler anemometry) techniques. The instanteneous plane image data captured by PIV measurement were examined in order to judge a pass-fail criteria of spray injection performance according to the specific pressure supplied. LDA/PDA technique were also applied to measure the velocity and droplet size of spray were not obtained from PIV measurement. The objective of this experimental study was the clear understanding of spray characteristics as well as the derivation of injector performance to understand clearly the spray characteristics by comparing the both results.

  • PDF

An Analysis on Spray Behavior of Liquid-thruster Injector through Pseudo-3D Distribution Measurement (준 3차원 공간분포 계측에 의한 액체 추력기 인젝터의 분무거동 해석)

  • Kim, Jin-Seok;Jung, Hun;Kim, Jeong-Soo;Kim, Sung-Cho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.141-144
    • /
    • 2008
  • Atomization characteristics and spatial distribution of the spray emanating from an injector of liquid-propellant thruster are investigated by using dual-mode phase Doppler anemometry (DPDA). Spray characteristic parameters such as the mean velocity, Sauter mean diameter (SMD), and velocity fluctuation are measured at various locations along the spray axis as well as on the radial direction. Those data are quantified in radial profile and also used to scrutinize the correlation between diameter and turbulence intensity of spray droplets. For the better visual grasp, dynamic behavior of spray droplets along the spray stream is presented through the velocity vectors projected on the plane of geometric axis of nozzle orifice and radial coordinate.

  • PDF

Development of Numerical Code for Interior Ballistics and Analysis of Two-phase Flow according to Drag Models (강내탄도 전산해석 코드 개발과 항력 모델에 따른 이상유동 분석)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Yoo, Seung-Young;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.38-46
    • /
    • 2011
  • In order to simulate the ignition-gas injection in the interior ballistics, a two-dimensional analytic code for two-phase flows has been developed. The Eulerian-Lagrangian approach and the low-dissipation simple high-resolution upwind scheme(LSHUS) have been adopted in the numerical code for the propellant combustion of the gun propelling charges. The ghost-cell extrapolation method has been used for the moving boundary in the chamber with the projectile movement. The calculation results of the developed code have been compared and verified through those of the dimensionless IBHVG2 code and the previous one-dimensional code. In comparison with the two-phase flows according to the drag models, the numerical analysis of the muzzle velocity has been affected by the drag model.

A Study on the Disintegration and Spreading Behavior of Fuel-spray Emanating from a Liquid-thruster Injector by Pseudo-3D Spatial Distribution Measurement (준3차원적 공간분포 계측에 의한 액체추력기 인젝터 연료분무의 분열 및 확산 거동에 관한 연구)

  • Kim, Jin-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.9-17
    • /
    • 2008
  • Pseudo-3D spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-propellant thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio ($L/d_o$) of 1.67 and under the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray. Although the distribution of spray characteristic parameters is symmetric against the geometric axis of nozzle orifice, their absolute values are asymmetric.

헬륨가스 분사에 의한 액체질소 냉각에 관한 연구

  • Chung, Yong-Gap;Cho, Nam-Gyeong;Kil, Kyeong-Seop;Song, Yi-Hwa;Kim, Yu;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.205-212
    • /
    • 2004
  • In this paper, to satisfy the temperature requirement of turbopump-inlet condition, the cooling of cryogenic propellant is performed at the simulated suction-line of the Launch Vehicle. The cooling method is by using gas helium injection. This paper investigates the effect of helium injection on liquid nitrogen, which simulates the liquid oxygen. By using helium injection, subcooling of liquid nitrogen can be achieved and in the condition of v/vL≒0.8min-¹ approximately in four minutes subcooling temperature can be achieved.

  • PDF