• Title/Summary/Keyword: 추진제(propellant)

Search Result 813, Processing Time 0.023 seconds

Impact Sensitivity and Friction Sensitivity of HTPB Based Propellant According to the Aluminum Content (HTPB 계열 추진제의 알루미늄 함량에 따른 충격감도 및 마찰감도 연구)

  • Kim, Kahee;Park, Jung-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.60-65
    • /
    • 2021
  • In this paper, we examined the ignition possibility of the propellant depending on its non-uniform composition of aluminum. Impact and friction sensitivity was investigated by arbitrarily changing the aluminum content in the range of 14~20% to simulate the non-uniform distribution of aluminum in the propellant. As a result of measuring the impact sensitivity, the 50% ignition energy and minimum ignition energy have values around 50 J regardless of the aluminum content. This means that the propellant does not become sensitive to impact even if the aluminum content is increased. On the other hand, the friction sensitivity result shows that as the aluminum content increases, the 50% ignition force and minimum ignition forces were decreased, and thus the propellant becomes sensitive. "Hot Spot" model of propellant ignition is applied, the space inside the propellant is momentarily compressed and ignited by friction stimuli rather than by impact stimuli.

Development of Cryogenic Propellant Filling System for Launch Vehicle (발사체 극저온 추진제 충전시스템 개발)

  • Yu, Byung-Il;Kim, Ji-Hoon;Park, Pyun-Gu;Park, Soon-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.676-677
    • /
    • 2010
  • In Naro Space Center, Naro launch vehicle launched 2 times. Launch pad for Naro launch vehicle in Naro space center equipped propellant feeding facility for operating launch process. This paper studied development process and operating method for liquid oxygen filling system of cryogenic propellant systems in launch pad propellant feeding facility.

  • PDF

Study on the Propellant Position for the Decrease of the Differential Pressure in the Interior Ballistics of a Gun Propulsion System (강내탄도 내 차압 감소를 위한 추진제 위치 연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.72-78
    • /
    • 2012
  • The position effect of the solid propellant in the combustion chamber on the decrease of the differential pressure has been investigated using the IBcode. Generally the metallic cartridge or CCC (combustible cartridge case) are used to load the propellant of the gun propulsion system. The position of the cartridge(propellant) is, therefore, a major factor for the interior ballistics in case the combustion chamber is larger than the cartridge. In this study, three different positions in the empty space of the chamber have been considered. As results, the case of the propellant located in the region near the base and breech has shown that the negative differential pressure and the difference between the breech pressure and the base pressure are much higher than those of the case of the propellant located in the center of the chamber. The case of the propellant in the center of the chamber is, therefore, more profitable to improve the performance of the interior ballistics.

Development of Fuel-Rich Propellant Using High Energy Metal Fuel (고에너지 금속 연료를 이용한 Fuel-Rich 추진제 개발)

  • Kim, Hye-Lim;Shin, Kyung-Hoon;Choi, Sung-Han;Lee, Won-Bok;Kim, Jun-Hyung;Ko, Seung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.424-428
    • /
    • 2012
  • Air-breathing Propulsion System is one of the promising propulsion systems because of low cost, easy storage, compactness and simplicity. A study of gas generator propellant for air-breathing propulsion system was performed in this paper. Amorphous Boron Powder was applied in propellant with various kinds of additives to determine combustion characteristics. And boron beads were made to apply them to the propellant. Combustion characteristics of propellant using amorphous boron powder and boron beads was compared.

  • PDF

Basic Model for Propellant Tank Ullage Calculation (추진제탱크 얼리지 해석을 위한 기본모델)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • Estimation of pressurant mass flowrate and its total mass required to maintain propellant tank pressure during propellant outflow is very important for design of pressurization control system and pressurant storage tank. Especially, more pressurant mass is required to maintain pressure in cryogenic propellant tank, because of reduced specific volume of pressurant due to heat transfer between pressurant and tank wall. So, basic model for propellant tank ullage calculation was proposed to estimate ullage and tank wall temperature distribution, required pressurant mass, and energy distribution of pressurant in ullage. Both test and theoretical analysis have been conducted, but only theoretical modeling method was addressed in this paper.

Study on the enhancement of burning rate of solid propellants (고체 추진제의 연소속도 증진 방안 연구)

  • Lee, Sunyoung;Hong, Myungpyo;Lee, Hyoungjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.508-512
    • /
    • 2017
  • In this study, we carried out the study on the combustion characteristics of HTPB/AP propellants with Al and Zr as fuel metal in order to develop the solid propellant with high burning rate. The major combustion characteristics of propellant were investigated as measuring of the burning rate and pressure exponent, and the HTPB/AP solid propellants were prepared with introducing Butacene as burning rate catalyst for the enhancement of burning rate. The propellant with Al and Zr was demonstrated the improvement of propellant performance and combustion characteristic.

  • PDF

Propellant Aging Characteristics According to Aluminum Contents (알루미늄 함량에 따른 추진제 노화 특성)

  • Jeong, Jae-Yun;Park, Jung-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.66-72
    • /
    • 2020
  • In this report, the post-curing and chemical aging ratio of propellants are described according to several aluminum contents. Under the same curing conditions, it was confirmed that the post-curing period of propellant having the aluminum content of 18 wt% was longer than the propellant having the 2 wt% of aluminum. On the other hand, in the chemical aging ratio analysis including post-curing, the propellant having the 18 wt% of aluminum was confirmed that the chemical aging proceeds slowly compared to the propellant having an aluminum content of 2 wt%.

Design, Fabrication and Testing of Planar Type of Micro Solid Propellant Thruster (평판형 마이크로 고체 추진제 추력기의 설계, 제작 및 평가)

  • Lee, Jong-Kwang;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.77-84
    • /
    • 2006
  • With the development of micro/nano spacecraft, concepts of micro propulsion are introduced for orbit transfer and drag compensation as well as attitude control. Micro solid propellant thruster has been attention as one of possible solution for micro thruster. In this paper, micro solid propellant thruster is introduced and research on basic components of a micro solid propellant thruster is reported. Micro Pt igniter was fabricated through negative patterning and quantitative effect of geometry was estimated. The characteristic of HTPB/AP solid propellant was investigated to measure the homing velocity. A combustion chamber was fabricated by means of anisotropic etching of photosensitive glass. Finally, micro solid propellant thrusters having various geometries were fabricated and tested.

A Study on the Property of NEPE System Propellant with Respect to the Size of RDX (RDX 입도에 따른 NEPE계 추진제 특성 연구)

  • Jang, Myungwook;Kim, Taekyu;Han, Haeji;Yun, Jaeho;Son, Hyunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.40-45
    • /
    • 2018
  • The propellant tile and crack which account for the greatest proportion of solid rockets are profoundly affected by viscosity and mechanical properties of solid propellant. In this paper solid propellant with nitrate ester polyester(NEPE) system has been researched for the viscosity, mechanical properties and burning properties with size and mixing ratio of RDX. the viscosity of propellant was changed significantly depending on the size of RDX and mixing ratio, and mechanical properties of NEPE system propellant were also varied. Considering both lower viscosity and stable mechanical properties, the optimum size and mixing ratio of RDX can be identified as the main factors to the NEPE system propellant.

The Characteristics and its Development Trends of Thermoplastic Propellants (열가소성 추진제의 특성 및 발전 전망)

  • Kim, Kyung-Moo;Kim, In-Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.47-57
    • /
    • 2011
  • All solid rocket propellants are divided in two basic classes according to chemical state: homogeneous(double base) and heterogeneous (composite). Today, composite propellants are extensively used as power sources covering the range from gas generators and small rocket systems to large launch vehicles in space programs. The development of composite rocket propellants in the past was mainly directed to thermoset polymers. But, the thermoset composite propellants have the complication in formulation and fabricating process to adapt to rocket system requirements. In contrast to the thermoset propellant, the PVC plastisols composite propellants have the advantages in the view of loss in manufacturing process, low cost of raw material, and stability of the handling process even though moderate ballistic and mechanical properties. It is predicted that the application field of this class will be used more widely than any other classes.