Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.2
s.302
/
pp.87-100
/
2005
In this paper, we propose a new selective temporal error concealment algerian best suited for H.264/AVC. The proposed algorithm performs selective temporal error concealment depending on whether the lost block is at background or foreground. It the corrupted macroblock is decided as at background, then the simple temporal replacement is performed. Also we propose replacing a lost block at foreground with the selective average of respectively estimated blocks from the multiple reference frames. This paper supposes error-corrupted H.264/AVC video bitstreams over CDMA2000 (or UMTS) air interface. It is shown that under Flexible Macroblock Ordering (FMO) coding of H.264/AVC, the proposed algorithm provides PSNR gain up to 1.18dB compared to built-in algorithm in the K264/AVC test model. In addition, the proposed error concealment method has average PSNR improvement of 0.33dB compared with that under N-slice coding mode. The proposed algorithm also provides better subjective video quality than other conventional error concealment algorithms.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.11a
/
pp.244-247
/
2010
현대 사회에서 영상 콘텐츠 (contents)의 사용량이 급증함에 따라 영상압축 기술은 이동통신이나 DMB 등의 시스템에 필수적인 기술이 되었으며 이에 따라 MPEG-x와 H.26x 등 국제적인 표준들이 존재한다. 전역 탐색 알고리듬은 주어진 검색 범위(search range) 내에서 모든 후보들의 변위의 에러 기준에 따라 최솟값을 이용해 위치를 검색하는 알고리듬이다. 그러나 전역 탐색 알고리듬은 각 화소에 대해 엄청난 양의 계산 로드를 가지며 이로 인해 심각한 문제를 발생시키는 단점이 있다. 1비트 변환 (one-bit transform) 을 이용한 고속 움직임 추정 알고리듬은 참조 프레임과 현재 프레임을 1비트, 즉 0 또는 1만 갖는 값으로 변환하는데, 이에는 exclusive-OR 연산을 통해 블록 매칭 에러 (block matching error)를 계산하는 과정과 변환하는 과정이 포함된다. 본 논문에서는 다양한 커널 (kernel)들을 이용한 1비트 변환과 움직임 추정에 대해 다루었으며, 기존에 있었던 1비트 변환에 이용된 커널과는 다른 다양한 커널을 이용한 움직임 추정 결과들을 비교해봄으로써 화질열화를 최소로 하는 커널을 찾는 것에 대해 연구했다.
본 논문에서는 임의의 단어를 인식하기 위하여 음성학적으로 최적화된 (phonetically-optimized word) 음성 데이터베이스를 사용하여 훈련된 가변어휘 고립단위 음 성인식기의 실제 인식기 사용 환경에서의 성능을 평가하였다. 이를 위하여, 훈련 데이터베이 스에서와 상이한 환경에서 수집된 음성학적으로 균형 잡힌(phonetically-balanced word) 고 립 단어 음성을 테스트 데이터로 사용하였다. 테스트 데이터는 일반적인 사무실에서 작동하 는 노트북 PC에서 내장 마이크를 사용하여 녹음되었다. 이렇게 녹음된 음성을 사용하여 고 립단어 인식기의 인식률을 측정하였다. 이 인식기는 최대 사후(maximum a posteriori) 추정 알고리듬을 사용하여 화자의 변화에 적응하였다. 컴퓨터 모의실험 결과에 의하면 화자 적응 을 하지 않은 기본 시스템은 깨끗한 음성에 대하여 81.3%에서 사무실 환경 음성에 대하여 69.8%로 인식률이 저하되었다. 사무실 환경 음성에 대하여, 비교사 점진(unsupervised incremental) 모드에서 최대 사후 추정 화자 적응 알고리듬을 적용하였을 경우에는 화자적 응을 하지 않은 경우에 비하여 9%의 에러를 감소시키며, 50단어의 적응 단어를 사용하여 교사 묶음(supervised batch) 모드에서 최대 사후 추정 화자 적응 알고리듬을 적용하였을 경우에는 16%의 에러를 감소시켰다.
영상 해상도 향상 기술은 영상 처리의 많은 분야에서 사용되는 전처리 기술로서, 최근들어 감시 카메라 시스템에서의 영상 해상도 향상을 위한 연구가 진행되고 있다. 보간 과정에서의 블러링으로 인한 화질 저하를 해결하기 위해서, 본 논문에서는 하위 레벨 보간을 이용한 에러 추정과 영상 해상도 향상방법을 제안한다. 제안하는 방법에서는 하위 레벨 보간을 통해서 보간 과정에서 발생하는 손실 정보를 추정하고, 추정한 손실 정보를 보간 결과에 적용하여 영상 복원의 결과를 향상시킨다. 동일한 영상을 이용한 실험을 통해서 기존의 방법들보다 0.38~1.75dB의 객관적 화질의 개선을 확인하였고 주관적 화질 비교에서도 향상되었음을 확인하였다. 제안하는 방법은 감시 카메라 시스템을 비롯한 영상 확대를 위한 응용 환경에서 활용될 수 있다.
Proceedings of the Korea Contents Association Conference
/
2009.05a
/
pp.865-869
/
2009
An image resolution enhancement is mainly utilized as pre-processing technique for various image processing application. It requires to decrease image quality deterioration such as blurring. In this paper, we propose an image resolution enhancement algorithm using low level interpolation. In the proposed algorithm, we calculate an error using low level interpolation, estimate an error image from the calculated error. The estimated error image is added interpolated high resolution image, it become lastly reconstruction image. Our experiments obtained the average PSNR about 1dB which is improved results better than conventional method for sensitive image quality. Also, subjective image quality with edge region is more clearness. The proposed method may be helpful for applications in various multimedia systems such as image restoration.
The Journal of Korean Institute of Communications and Information Sciences
/
v.26
no.10B
/
pp.1390-1398
/
2001
시선 위치 추적이란 사용자가 모니터 상의 어느 지점을 쳐다보고 있는 지를 파악해 내는 기술이다. 시선 위치를 파악하기 위해 본 논문에서는 2차원 카메라 영상으로부터 얼굴 영역 및 얼굴 특징점을 추출한다. 초기에 모니터상의 3 지점을 쳐다볼 때 얼굴 특징점들은 움직임의 변화를 나타내며, 이로부터 카메라 보정 및 매개변수 추정 방법을 이용하여 얼굴특징점의 3차원 위치를 추정한다. 이후 사용자가 모니터 상의 또 다른 지점을 쳐다볼 때 얼굴 특징점의 변화된 3차원 위치는 3차원 움직임 추정방법 및 아핀변환을 이용하여 구해낸다. 이로부터 변화된 얼굴 특징점 및 이러한 얼굴 특징점으로 구성된 얼굴평면이 구해지며, 이러한 평면의 법선으로부터 모니터 상의 시선위치를 구할 수 있다. 실험 결과 19인치 모니터를 사용하여 모니터와 사용자까지의 거리를 50∼70cm정도 유지하였을 때 약 2.08인치의 시선위치에러 성능을 얻었다. 이 결과는 Rikert의 논문에서 나타낸 시선위치추적 성능(5.08cm 에러)과 비슷한 결과를 나타낸다. 그러나 Rikert의 방법은 모니터와 사용자 얼굴까지의 거리는 항상 고정시켜야 한다는 단점이 있으며, 얼굴의 자연스러운 움직임(회전 및 이동)이 발생하는 경우 시선위치추적 에러가 증가되는 문제점이 있다. 동시에 그들의 방법은 사용자 얼굴의 뒤 배경에 복잡한 물체가 없는 것으로 제한조건을 두고 있으며 처리 시간이 상당히 오래 걸리는 문제점이 있다. 그러나 본 논문에서 제안하는 시선 위치 추적 방법은 배경이 복잡한 사무실 환경에서도 사용가능하며, 약 3초 이내의 처리 시간(200MHz Pentium PC)이 소요됨을 알 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2004.11a
/
pp.75-78
/
2004
H.264/AVC 동영상 부호화 표준은 이전의 여러 동영상 부호화 표준에는 없던 새로운 부호화 도구들이 추가되었으며 이를 통하여 보다 높은 압축 효율을 보인다. 추가된 부호화 도구들로 인하여 H.264내의 매크로블록은 이전의 부호화 표준에서 보다 많은 정보를 포함한다. 하나의 매크로블록에 대해서 최대 16개까지의 서로 다른 움직임벡터를 가질 수 있으며 최대 4개의 서로 다른 참조프레임을 가질 수 있다. 또한 다양한 블록크기로의 움직임 추정하며 이는 매크로블록의 모드로서 정의된다. 따라서 H.264내의 매크로블록은 기존보다 많은 움직임벡터를 가질 뿐만 아니라 기존에는 없던 참조 프레임과 매크로블록모드의 정보를 새로이 포함하고 있다. 반면 현재의 H.264내의 시방향 에러은닉기법은 이전 부호화 표준에서 사용하던 방법과 유사한 방법으로 에러가 발생한 블록의 주변 매크로블록의 움직임 벡터만을 고려하여 에러를 은닉한다. 본 논문은 H.264 부호화 표준의 특성을 고려하여 매크로블록이 포함하고 있는 다양한 의기의 움직임벡터 및 참조 프레임 뿐 아니라 주변 매크로블록들의 모드를 이용하여 서로 다른 블록 크기로 에러를 은닉함으로써 매크로블록이 포함하고 있는 정보를 최대한 활용하고 이를 통한 효율적인 에러은닉 알고리듬을 제안한다. 제안하는 알고리듬은 기존의 H.264에서의 시방향 에러은닉 기법과 비교하여 적은 연산량만을 가지면서도 최대 2.17dB까지의 향상된 화질을 나타낸다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.39
no.2
/
pp.147-154
/
2002
In this paper, we propose an error estimation method based on the Bhattacharyya distance for multimodal data. First, we try to find the empirical relationship between the classification error and the Bhattacharyya distance. Then, we investigate the possibility to derive the error estimation equation based on the Bhattacharyya distance for multimodal data. We assume that the distribution of multimodal data can be approximated as a mixture of several Gaussian distributions. Experimental results with remotely sensed data showed that there exist strong relationships between the Bhattacharyya distance and the classification error and that it is possible to predict the classification error using the Bhattacharyya distance for multimodal data.
Database query optimates the selectivety of a query to find the most efficient access plan. Multi-dimensional selectivity estimation technique is required for a query with multiple attributes because the attributes are not independent each other. Histogram is practically used in most commercial database products because it approximates data distributions with small overhead and small error rates. However, histogram is inadequate for a query with multiple attributes because it incurs high storage overhead and high error rates. In this paper, we propose a novel method for multi-dimentional selectivity estimation. Compressed information from a large number of small-sized histogram buckets is maintained using the discrete cosine transform. This enables low error rates and low storage overheads even in high dimensions. Extensive experimental results show adventages of the proposed approach.
Monte Carlo ray tracing has been widely used for simulating a diverse set of photo-realistic effects. However, this technique typically produces noise when insufficient numbers of samples are used. As the number of samples allocated per pixel is increased, the rendered images converge. However, this approach of generating sufficient numbers of samples, requires prohibitive rendering time. To solve this problem, image filtering can be applied to rendered images, by filtering the noisy image rendered using low sample counts and acquiring smoothed images, instead of naively generating additional rays. In this paper, we proposed a Stein's Unbiased Risk Estimator (SURE) based $\grave{A}$-Trous wavelet to filter the noise in rendered images in a near-interactive rate. Based on SURE, we can estimate filtering errors associated with $\grave{A}$-Trous wavelet, and identify wavelet coefficients reducing filtering errors. Our approach showed improvement, up to 6:1, over the original $\grave{A}$-Trous filter on various regions in the image, while maintaining a minor computational overhead. We have integrated our propsed filtering method with the recent interactive ray tracing system, Embree, and demonstrated its benefits.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.