• Title/Summary/Keyword: 추정도

Search Result 31,732, Processing Time 0.053 seconds

The State Hermitage Museum·Northwest University for Nationalities·Shanghai Chinese Classics Publishing House Kuche Art Relics Collected in Russia Shanghai Chinese Classics Publishing House, 2018 (아라사국립애이미탑십박물관(俄羅斯國立艾爾米塔什博物館)·서북민족대학(西北民族大學)·상해고적출판사(上海古籍出版社) 편(編) 『아장구자예술품(俄藏龜玆藝術品)』, 상해고적출판사(上海古籍出版社), 2018 (『러시아 소장 쿠차 예술품』))

  • Min, Byung-Hoon
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.98
    • /
    • pp.226-241
    • /
    • 2020
  • Located on the right side of the third floor of the State Hermitage Museum in St. Petersburg, the "Art of Central Asia" exhibition boasts the world's finest collection of artworks and artifacts from the Silk Road. Every item in the collection has been classified by region, and many of them were collected in the early twentieth century through archaeological surveys led by Russia's Pyotr Kozlov, Mikhail Berezovsky, and Sergey Oldenburg. Some of these artifacts have been presented around the world through special exhibitions held in Germany, France, the United Kingdom, the Netherlands, Korea, Japan, and elsewhere. The fruits of Russia's Silk Road expeditions were also on full display in the 2008 exhibition The Caves of One Thousand Buddhas - Russian Expeditions on the Silk Route on the Occasion of 190 Years of the Asiatic Museum, held at the Hermitage Museum. Published in 2018 by the Shanghai Chinese Classics Publishing House in collaboration with the Hermitage Museum, Kuche Art Relics Collected in Russia introduces the Hermitage's collection of artifacts from the Kuche (or Kucha) region. While the book focuses exclusively on artifacts excavated from the Kuche area, it also includes valuable on-site photos and sketches from the Russian expeditions, thus helping to enhance readers' overall understanding of the characteristics of Kuche art within the Buddhist art of Central Asia. The book was compiled by Dr. Kira Samosyuk, senior curator of the Oriental Department of the Hermitage Museum, who also wrote the main article and the artifact descriptions. Dr. Samosyuk is an internationally renowned scholar of Central Asian Buddhist art, with a particular expertise in the art of Khara-Khoto and Xi-yu. In her article "The Art of the Kuche Buddhist Temples," Dr. Samosyuk provides an overview of Russia's Silk Road expeditions, before introducing the historical development of Kuche in the Buddhist era and the aspects of Buddhism transmitted to Kuche. She describes the murals and clay sculptures in the Buddhist grottoes, giving important details on their themes and issues with estimating their dates, and also explains how the temples operated as places of worship. In conclusion, Dr. Samosyuk argues that the Kuche region, while continuously engaging with various peoples in China and the nomadic world, developed its own independent Buddhist culture incorporating elements of Gandara, Hellenistic, Persian, and Chinese art and culture. Finally, she states that the culture of the Kuche region had a profound influence not only on the Tarim Basin, but also on the Buddhist grottoes of Dunhuang and the central region of China. A considerable portion of Dr. Samosyuk's article addresses efforts to estimate the date of the grottoes in the Kuche region. After citing various scholars' views on the dates of the murals, she argues that the Kizil grottoes likely began prior to the fifth century, which is at least 100 years earlier than most current estimates. This conclusion is reached by comparing the iconography of the armor depicted in the murals with related materials excavated from the surrounding area (such as items of Sogdian art). However, efforts to date the Buddhist grottoes of Kuche must take many factors into consideration, such as the geological characteristics of the caves, the themes and styles of the Buddhist paintings, the types of pigments used, and the clothing, hairstyles, and ornamentation of the depicted figures. Moreover, such interdisciplinary data must be studied within the context of Kuche's relations with nearby cultures. Scientific methods such as radiocarbon dating could also be applied for supplementary materials. The preface of Kuche Art Relics Collected in Russia reveals that the catalog is the first volume covering the Hermitage Museum's collection of Kuche art, and that the next volume in the series will cover a large collection of mural fragments that were taken from Berlin during World War II. For many years, the whereabouts of these mural fragments were unknown to both the public and academia, but after restoration, the fragments were recently re-introduced to the public as part of the museum's permanent exhibition. We look forward to the next publication that focuses on these mural fragments, and also to future catalogs introducing the artifacts of Turpan and Khotan. Currently, fragments of the murals from the Kuche grottoes are scattered among various countries, including Russia, Germany, and Korea. With the publication of this catalog, it seems like an opportune time to publish a comprehensive catalog on the murals of the Kuche region, which represent a compelling mixture of East-West culture that reflects the overall characteristics of the region. A catalog that includes both the remaining murals of the Kizil grottoes and the fragments from different parts of the world could greatly enhance our understanding of the murals' original state. Such a book would hopefully include a more detailed and interdisciplinary discussion of the artifacts and murals, including scientific analyses of the pigments and other materials from the perspective of conservation science. With the ongoing rapid development in western China, the grotto murals are facing a serious crisis related to climate change and overcrowding in the oasis city of Xinjiang. To overcome this challenge, the cultural communities of China and other countries that possess advanced technology for conservation and restoration must begin working together to protect and restore the murals of the Silk Road grottoes. Moreover, centers for conservation science should be established to foster human resources and collect information. Compiling the data of Russian expeditions related to the grottoes of Kuche (among the results of Western archaeological surveys of the Silk Road in the early twentieth century), Kuche Art Relics Collected in Russia represents an important contribution to research on Kuche's Buddhist art and the Silk Road, which will only be enhanced by a future volume introducing the mural fragments from Germany. As the new authoritative source for academic research on the artworks and artifacts of the Kuche region, the book also lays the groundwork for new directions for future studies on the Silk Road. Finally, the book is also quite significant for employing a new editing system that improves its academic clarity and convenience. In conclusion, Dr. Kira Samosyuk, who planned the publication, deserves tremendous praise for taking the research of Silk Road art to new heights.

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF