• Title/Summary/Keyword: 추적 알고리즘

Search Result 1,882, Processing Time 0.031 seconds

LIDAR based Multi-object Tracking Algorithm (LIDAR 기반의 다중 물체 추적 알고리즘)

  • Lee, Jae-Jun;Ryu, Jee-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1309-1312
    • /
    • 2015
  • 본 논문에서는 현대 자율 주행 차량 경진대회에 적용되었던 LIDAR 기반의 다중 물체 추적 알고리즘을 소개한다. 물체 추적은 자율 주행 차량이 외부 환경을 인지하는데 중요한 역할을 한다. 본 논문의 물체 추적 알고리즘은 동시에 여러 개의 물체를 추적할 수 있도록 Multiple Data Association 방식을 사용하였고 순수하게 LIDAR만으로 동작하기 때문에 밤과 낮 모든 경우에 적용 가능하다. 알고리즘은 Clustering, Data Association, State Estimation, Data Arrangement 총 4단계로 이루어져 있으며 본 논문에서는 각 단계별로 알고리즘의 동작 방식을 소개한다. 실제 구현에는 Velodyne사의 HDL-32e이 사용되었고 실제 주행에서 교차로 내의 차량 추적 및 선행 차량의 동향을 추적하는데 적용되었다.

Fast Tracking of Face Region In Video Images using Color Histogram (칼라 히스토그램을 이용한 비디오 영상에서 얼굴 영역의 고속 추적)

  • 유태웅;오일석
    • Proceedings of the Korea Database Society Conference
    • /
    • 1995.12a
    • /
    • pp.165-168
    • /
    • 1995
  • 본 논문은 비디오 연속 영상에서 얼굴의 위치를 추적하는 알고리즘에 관하여 기술한다. 컴퓨터 비젼에서 대량의 비디오 연속 영상내 물체 추적은 실시간에 처리되는 빠른 알고리즘이 요구된다. 기존의 방법은 형태에 기반한 알고리즘으로 물체의 회전, 크기 변화, 겹침 등에 대한 문제에 민감하여 여러 가지 어려움이 발생한다. 그러나 칼라를 이용한 알고리즘은 이러한 문제에 대하여 둔감하여 훨씬 효과적이다. 본 논문은 칼라 3D 히스토그램을 이용한 Swain과 Ballard의 역 투사(backprojection) 방법을 적용하여 비디오 연속 영상에서 얼굴의 위치를 빠르고 정확히 추적하는 알고리즘을 제안한다.

  • PDF

A Semantic Video Object Tracking Algorithm Using Contour Refinement (윤곽선 재조정을 통한 의미 있는 객체 추적 알고리즘)

  • 임정은;이재연;박현상;나종범
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06b
    • /
    • pp.51-56
    • /
    • 1999
  • 본 논문에서는 동영상에서 의미 있는 객체 영역을 추출하기 위해, 사람이 첫 장에서 관심 있는 객체를 표시하고, 그 다음 프레임부터는 사람의 도움 없이 객체를 추적하는 반자동 (semi-automatic) 방식의 객체 추적 알고리즘에 대해 개선된 알고리즘을 제안하고 이를 구현하였다. 제안한 객체 추적 알고리즘은 이전 프레임의 객체의 움직임을 이용하여 현재 프레임에서 대략적인 객체의 위치를 찾은 후, 윤곽선의 불확실도를 조사하고, 윤곽선을 재조정하여 정확한 객체의 위치를 찾는다. 제안한 알고리즘은 다양한 영상에서 만족할 만한 결과를 얻었다.

  • PDF

A Study on Tracking Algorithm for Moving Object Using Partial Boundary Line Information (부분 외곽선 정보를 이용한 이동물체의 추척 알고리즘)

  • Jo, Yeong-Seok;Lee, Ju-Sin
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.539-548
    • /
    • 2001
  • In this paper, we propose that fast tracking algorithm for moving object is separated from background, using partial boundary line information. After detecting boundary line from input image, we track moving object by using the algorithm which takes boundary line information as feature of moving object. we extract moving vector on the imput image which has environmental variation, using high-performance BMA, and we extract moving object on the basis of moving vector. Next, we extract boundary line on the moving object as an initial feature-vector generating step for the moving object. Among those boundary lines, we consider a part of the boundary line in every direction as feature vector. And then, as a step for the moving object, we extract moving vector from feature vector generated under the information of the boundary line of the moving object on the previous frame, and we perform tracking moving object from the current frame. As a result, we show that the proposed algorithm using feature vector generated by each directional boundary line is simple tracking operation cost compared with the previous active contour tracking algorithm that changes processing time by boundary line size of moving object. The simulation for proposed algorithm shows that BMA operation is reduced about 39% in real image and tracking error is less than 2 pixel when the size of feature vector is [$10{\times}5$] using the information of each direction boundary line. Also the proposed algorithm just needs 200 times of search operation bout processing cost is varies by the size of boundary line on the previous algorithm.

  • PDF

Adaptive Block Matching Algorithm Using Multi Block (다중 블록을 이용한 적응적 블록 정합 알고리즘)

  • Cho, Yunsub;Han, Yunsang;Lee, Sangkeun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.6-7
    • /
    • 2013
  • 본 논문은 기존의 고정블록 알고리즘에서 발생할 수 있는 객체 추적의 문제점을 보안한 다중 블록을 이용한 적응적 블록 정합 알고리즘을 제안한다. 기존의 고정블록을 이용한 정합 알고리즘은 추적 대상 객체의 크기와 블록의 크기가 추적 성능에 미치는 영향이 크기 때문에 객체 추적에 실패하는 경우가 발생한다. 본 논문에서는 고정된 블록 정합 알고리즘의 문제점을 해결하기 위해 다중 블록을 이용하여 객체 내의 포함된 블록들을 효과적으로 선택하고 선택된 블록들의 특성으로부터 효과적인 가중치를 부여하여 추적 성능을 향상시킨다. 제안된 알고리즘은 블록 정합 알고리즘 중 가장 정확도가 높다고 알려진 전역 탐색 방법을 이용하여 정확도를 평가 하였다.

  • PDF

Implementation of Unmanned Monitoring/Tracking System based on Wireless Sensor Network (무선 센서 네트워크 기반 무인 감시/추적 시스템의 구현)

  • Ahn, Il-Yeup;Lee, Sang-Shin;Kim, Jae-Ho;Song, Min-Hwan;Won, Kwang-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1019-1022
    • /
    • 2005
  • 본 논문에서는 현재 활발한 연구개발이 이루어지고 있는 유비쿼터스 컴퓨팅, 센서 네트워크 기술을 적용한 무인 감시/추적 시스템을 제시한다. 본 논문의 무인 감시/추적 시스템은 센서네트워크 기술, 다중센서 융합에 의한 탐지 및 위치 인식기술, 무인 감시/추적 알고리즘으로 구성되어 있다. 센서네트워크는 센싱 데이터를 실시간으로 전송하기 위해 노드의 주소를 기반으로 하는 계층적 멀티홉 라우팅 기법을 제안하였다. 침입자와 추적자의 위치 인식은 자기센서 및 초음파센서를 가진 센서모듈들로부터 얻어진 센싱 정보를 융합하고, 이를 확률적으로 침입자 및 추적자의 위치를 결정하는 Particle Filter를 적용한 위치인식 알고리즘을 통해 이루어진다. 추적 알고리즘은 무인 자율 추적을 위해 이동벡터에 기반한 알고리즘이다.

  • PDF

Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm (HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계)

  • Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1351-1352
    • /
    • 2015
  • 본 논문에서는 지능형 영상 감시 시스템에서 보행자를 검출하고 추적을 수행하기 위해 은닉층 활성함수에 가우시안 대신 FCM를 사용한 RBFNNs 패턴분류기와 객체 추적 알고리즘인 Mean Shift를 융합한 시뮬레이터를 개발한다. 시뮬레이터는 검출부과 추적부로 나누며, 검출부에서는 입력 영상으로부터 기울기의 방향성을 이용한 HOG(Histogram of Oriented Gradient) 특징을 구하고 빠른 처리속도를 위해 PCA 알고리즘을 통해 차원수를 축소하고 pRBFNNs 패턴분류기를 통해 보행자를 검출 한다. 다음 추적부에서 객체 추적 알고리즘인 Mean Shift를 이용하여 검출된 보행자 추적을 수행한다.

  • PDF

Integration of Condensation and Mean-shift algorithms for real-time object tracking (실시간 객체 추적을 위한 Condensation 알고리즘과 Mean-shift 알고리즘의 결합)

  • Cho Sang-Hyun;Kang Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.273-282
    • /
    • 2005
  • Real-time Object tracking is an important field in developing vision applications such as surveillance systems and vision based navigation. mean-shift algerian and Condensation algorithm are widely used in robust object tracking systems. Since the mean-shift algorithm is easy to implement and is effective in object tracking computation, it is widely used, especially in real-time tracking systems. One of the drawbacks is that it always converges to a local maximum which may not be a global maximum. Therefore, in a cluttered environment, the Mean-shift algorithm does not perform well. On the other hand, since it uses multiple hypotheses, the Condensation algorithm is useful in tracking in a cluttered background. Since it requires a complex object model and many hypotheses, it contains a high computational complexity. Therefore, it is not easy to apply a Condensation algorithm in real-time systems. In this paper, by combining the merits of the Condensation algorithm and the mean-shift algorithm we propose a new model which is suitable for real-time tracking. Although it uses only a few hypotheses, the proposed method use a high-likelihood hypotheses using mean-shift algorithm. As a result, we can obtain a better result than either the result produced by the Condensation algorithm or the result produced by the mean-shift algorithm.

Object-Tracking System Using Combination of CAMshift and Kalman filter Algorithm (CAMshift 기법과 칼만 필터를 결합한 객체 추적 시스템)

  • Kim, Dae-Young;Park, Jae-Wan;Lee, Chil-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.619-628
    • /
    • 2013
  • In this paper, we describe a strongly improved tracking method using combination of CAMshift and Kalman filter algorithm. CAMshift algorithm doesn't consider the object's moving direction and velocity information when it set the search windows for tracking. However if Kalman filter is combined with CAMshift for setting the search window, it can accurately predict the object's location with the object's present location and velocity information. By using this prediction before CAMshift algorithm, we can track fast moving objects successfully. Also in this research, we show better tracking results than conventional approaches which make use of single color information by using both color information of HSV and YCrCb simultaneously. This modified approach obtains more robust color segmentation than others using single color information.

A Study on Effective Moving Object Segmentation and Fast Tracking Algorithm (효율적인 이동물체 분할과 고속 추적 알고리즘에 관한 연구)

  • Jo, Yeong-Seok;Lee, Ju-Sin
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.359-368
    • /
    • 2002
  • In this paper, we propose effective boundary line extraction algorithm for moving objects by matching error image and moving vectors, and fast tracking algorithm for moving object by partial boundary lines. We extracted boundary line for moving object by generating seeds with probability distribution function based on Watershed algorithm, and by extracting boundary line for moving objects through extending seeds, and then by using moving vectors. We processed tracking algorithm for moving object by using a part of boundary lines as features. We set up a part of every-direction boundary line for moving object as the initial feature vectors for moving objects. Then, we tracked moving object within current frames by using feature vector for the previous frames. As the result of the simulation for tracking moving object on the real images, we found that tracking processing of the proposed algorithm was simple due to tracking boundary line only for moving object as a feature, in contrast to the traditional tracking algorithm for active contour line that have varying processing cost with the length of boundary line. The operations was reduced about 39% as contrasted with the full search BMA. Tracking error was less than 4 pixel when the feature vector was $(15\times{5)}$ through the information of every-direction boundary line. The proposed algorithm just needed 200 times of search operation.