Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1309-1312
/
2015
본 논문에서는 현대 자율 주행 차량 경진대회에 적용되었던 LIDAR 기반의 다중 물체 추적 알고리즘을 소개한다. 물체 추적은 자율 주행 차량이 외부 환경을 인지하는데 중요한 역할을 한다. 본 논문의 물체 추적 알고리즘은 동시에 여러 개의 물체를 추적할 수 있도록 Multiple Data Association 방식을 사용하였고 순수하게 LIDAR만으로 동작하기 때문에 밤과 낮 모든 경우에 적용 가능하다. 알고리즘은 Clustering, Data Association, State Estimation, Data Arrangement 총 4단계로 이루어져 있으며 본 논문에서는 각 단계별로 알고리즘의 동작 방식을 소개한다. 실제 구현에는 Velodyne사의 HDL-32e이 사용되었고 실제 주행에서 교차로 내의 차량 추적 및 선행 차량의 동향을 추적하는데 적용되었다.
Proceedings of the Korea Database Society Conference
/
1995.12a
/
pp.165-168
/
1995
본 논문은 비디오 연속 영상에서 얼굴의 위치를 추적하는 알고리즘에 관하여 기술한다. 컴퓨터 비젼에서 대량의 비디오 연속 영상내 물체 추적은 실시간에 처리되는 빠른 알고리즘이 요구된다. 기존의 방법은 형태에 기반한 알고리즘으로 물체의 회전, 크기 변화, 겹침 등에 대한 문제에 민감하여 여러 가지 어려움이 발생한다. 그러나 칼라를 이용한 알고리즘은 이러한 문제에 대하여 둔감하여 훨씬 효과적이다. 본 논문은 칼라 3D 히스토그램을 이용한 Swain과 Ballard의 역 투사(backprojection) 방법을 적용하여 비디오 연속 영상에서 얼굴의 위치를 빠르고 정확히 추적하는 알고리즘을 제안한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1999.06b
/
pp.51-56
/
1999
본 논문에서는 동영상에서 의미 있는 객체 영역을 추출하기 위해, 사람이 첫 장에서 관심 있는 객체를 표시하고, 그 다음 프레임부터는 사람의 도움 없이 객체를 추적하는 반자동 (semi-automatic) 방식의 객체 추적 알고리즘에 대해 개선된 알고리즘을 제안하고 이를 구현하였다. 제안한 객체 추적 알고리즘은 이전 프레임의 객체의 움직임을 이용하여 현재 프레임에서 대략적인 객체의 위치를 찾은 후, 윤곽선의 불확실도를 조사하고, 윤곽선을 재조정하여 정확한 객체의 위치를 찾는다. 제안한 알고리즘은 다양한 영상에서 만족할 만한 결과를 얻었다.
In this paper, we propose that fast tracking algorithm for moving object is separated from background, using partial boundary line information. After detecting boundary line from input image, we track moving object by using the algorithm which takes boundary line information as feature of moving object. we extract moving vector on the imput image which has environmental variation, using high-performance BMA, and we extract moving object on the basis of moving vector. Next, we extract boundary line on the moving object as an initial feature-vector generating step for the moving object. Among those boundary lines, we consider a part of the boundary line in every direction as feature vector. And then, as a step for the moving object, we extract moving vector from feature vector generated under the information of the boundary line of the moving object on the previous frame, and we perform tracking moving object from the current frame. As a result, we show that the proposed algorithm using feature vector generated by each directional boundary line is simple tracking operation cost compared with the previous active contour tracking algorithm that changes processing time by boundary line size of moving object. The simulation for proposed algorithm shows that BMA operation is reduced about 39% in real image and tracking error is less than 2 pixel when the size of feature vector is [$10{\times}5$] using the information of each direction boundary line. Also the proposed algorithm just needs 200 times of search operation bout processing cost is varies by the size of boundary line on the previous algorithm.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.11a
/
pp.6-7
/
2013
본 논문은 기존의 고정블록 알고리즘에서 발생할 수 있는 객체 추적의 문제점을 보안한 다중 블록을 이용한 적응적 블록 정합 알고리즘을 제안한다. 기존의 고정블록을 이용한 정합 알고리즘은 추적 대상 객체의 크기와 블록의 크기가 추적 성능에 미치는 영향이 크기 때문에 객체 추적에 실패하는 경우가 발생한다. 본 논문에서는 고정된 블록 정합 알고리즘의 문제점을 해결하기 위해 다중 블록을 이용하여 객체 내의 포함된 블록들을 효과적으로 선택하고 선택된 블록들의 특성으로부터 효과적인 가중치를 부여하여 추적 성능을 향상시킨다. 제안된 알고리즘은 블록 정합 알고리즘 중 가장 정확도가 높다고 알려진 전역 탐색 방법을 이용하여 정확도를 평가 하였다.
본 논문에서는 현재 활발한 연구개발이 이루어지고 있는 유비쿼터스 컴퓨팅, 센서 네트워크 기술을 적용한 무인 감시/추적 시스템을 제시한다. 본 논문의 무인 감시/추적 시스템은 센서네트워크 기술, 다중센서 융합에 의한 탐지 및 위치 인식기술, 무인 감시/추적 알고리즘으로 구성되어 있다. 센서네트워크는 센싱 데이터를 실시간으로 전송하기 위해 노드의 주소를 기반으로 하는 계층적 멀티홉 라우팅 기법을 제안하였다. 침입자와 추적자의 위치 인식은 자기센서 및 초음파센서를 가진 센서모듈들로부터 얻어진 센싱 정보를 융합하고, 이를 확률적으로 침입자 및 추적자의 위치를 결정하는 Particle Filter를 적용한 위치인식 알고리즘을 통해 이루어진다. 추적 알고리즘은 무인 자율 추적을 위해 이동벡터에 기반한 알고리즘이다.
본 논문에서는 지능형 영상 감시 시스템에서 보행자를 검출하고 추적을 수행하기 위해 은닉층 활성함수에 가우시안 대신 FCM를 사용한 RBFNNs 패턴분류기와 객체 추적 알고리즘인 Mean Shift를 융합한 시뮬레이터를 개발한다. 시뮬레이터는 검출부과 추적부로 나누며, 검출부에서는 입력 영상으로부터 기울기의 방향성을 이용한 HOG(Histogram of Oriented Gradient) 특징을 구하고 빠른 처리속도를 위해 PCA 알고리즘을 통해 차원수를 축소하고 pRBFNNs 패턴분류기를 통해 보행자를 검출 한다. 다음 추적부에서 객체 추적 알고리즘인 Mean Shift를 이용하여 검출된 보행자 추적을 수행한다.
Real-time Object tracking is an important field in developing vision applications such as surveillance systems and vision based navigation. mean-shift algerian and Condensation algorithm are widely used in robust object tracking systems. Since the mean-shift algorithm is easy to implement and is effective in object tracking computation, it is widely used, especially in real-time tracking systems. One of the drawbacks is that it always converges to a local maximum which may not be a global maximum. Therefore, in a cluttered environment, the Mean-shift algorithm does not perform well. On the other hand, since it uses multiple hypotheses, the Condensation algorithm is useful in tracking in a cluttered background. Since it requires a complex object model and many hypotheses, it contains a high computational complexity. Therefore, it is not easy to apply a Condensation algorithm in real-time systems. In this paper, by combining the merits of the Condensation algorithm and the mean-shift algorithm we propose a new model which is suitable for real-time tracking. Although it uses only a few hypotheses, the proposed method use a high-likelihood hypotheses using mean-shift algorithm. As a result, we can obtain a better result than either the result produced by the Condensation algorithm or the result produced by the mean-shift algorithm.
In this paper, we describe a strongly improved tracking method using combination of CAMshift and Kalman filter algorithm. CAMshift algorithm doesn't consider the object's moving direction and velocity information when it set the search windows for tracking. However if Kalman filter is combined with CAMshift for setting the search window, it can accurately predict the object's location with the object's present location and velocity information. By using this prediction before CAMshift algorithm, we can track fast moving objects successfully. Also in this research, we show better tracking results than conventional approaches which make use of single color information by using both color information of HSV and YCrCb simultaneously. This modified approach obtains more robust color segmentation than others using single color information.
In this paper, we propose effective boundary line extraction algorithm for moving objects by matching error image and moving vectors, and fast tracking algorithm for moving object by partial boundary lines. We extracted boundary line for moving object by generating seeds with probability distribution function based on Watershed algorithm, and by extracting boundary line for moving objects through extending seeds, and then by using moving vectors. We processed tracking algorithm for moving object by using a part of boundary lines as features. We set up a part of every-direction boundary line for moving object as the initial feature vectors for moving objects. Then, we tracked moving object within current frames by using feature vector for the previous frames. As the result of the simulation for tracking moving object on the real images, we found that tracking processing of the proposed algorithm was simple due to tracking boundary line only for moving object as a feature, in contrast to the traditional tracking algorithm for active contour line that have varying processing cost with the length of boundary line. The operations was reduced about 39% as contrasted with the full search BMA. Tracking error was less than 4 pixel when the feature vector was $(15\times{5)}$ through the information of every-direction boundary line. The proposed algorithm just needed 200 times of search operation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.