• Title/Summary/Keyword: 추적안테나

Search Result 213, Processing Time 0.019 seconds

Design of K-Band Radar Transceiver for Tracking High Speed Targets (고속 표적 추적을 위한 K-대역 레이다 송수신기 설계)

  • Sun, Sun-Gu;Lee, Jung-Soo;Cho, Byung-Lae;Lee, Jong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1304-1310
    • /
    • 2010
  • This study is to design FMCW radar transceiver of K-band which is used to detect and track approaching high speed targets with low altitude. The transmitter needs high output power due to small RCS targets and wide beamwidth of transmit antenna. Multi-channel receivers are required to detect and track targets by interferometer method. Transmitter consists of high power amplifier, waveguide switch, and frequency up-converter. Receiver is composed of five channel receivers, up and down converters, X-band local oscillator and waveform generator. Before manufacturing it, the proposed architecture of transceiver is proved by modeling and simulation using several parameters. Then, it is manufactured by using industrial RF components. The performance parameters are measured through experiment. In the experiment, transmitting power and receiver gain were measured with 39.64 dBm and 29.1 dB, respectively. All other parameters in the specification were satisfied as well.

Development of an Automated Operational Orbit Processing System (자동 궤도운용 시스템 개발)

  • Kim, Hae-Dong;Jung, Ok-Chul;Kim, Eun-Kyou;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.836-842
    • /
    • 2007
  • This paper describes the development of an automated operational orbit processing system (KGS automated Operational Orbit Processing System, KOOPS), which can determine, evaluate, update, and generate the orbit data automatically. Developed system can be applied to the multi satellite mission operations as a generic satellite orbit processing system in that the KOOPS has a capability to process various kinds of tracking data and assign pre and post processes according to the satellite system respectively. Results of applying the KOOPS to the KOMPSAT-1 and KOMPSAT-2 mission operations show that man power is greatly reduced and the efficiency and stability of the mission operations are significantly increased. The experiences to develop the KOOPS and operate multi satellite missions using this system can be applied to enhance the multi and generic flight dynamics system further.

K-Band Radar Development for the Ground Moving Vehicle (지상 이동 차량용 K-대역 레이다 개발)

  • Lee, Jong-Min;Cho, Byung-Lae;Sun, Sun-Gu;Lee, Jung-Soo;Park, Sang-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.362-370
    • /
    • 2011
  • This paper presents a K-band radar system installed on the ground moving vehicle to detect and track a high-speed target. The presented radar is separated into three search regions to satisfy a wide area detection and a limitation of the installing space of the radar, and each region performs detecting the target independently and tracking the detected target automatically. The presented radar radiating K-band FMCW waveform acquires range and velocity information of the target at the every dwell and receiving antenna of the radar is applied the multiple baseline interferometer to extract the precise angle information of the target. 3-dimensional tracking accuracy of the radar is 0.25 m RMSE measured actually through a fire experiment of an imitation target.

Development of High power Threat Signal Simulator and Interfacing Tracking Radar (고출력 위협신호 모의장치 개발 및 추적레이다 연동)

  • Kwak, Yong-Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2022
  • In this study, in order to test the performance of the aircraft system, a threat signal simulator that can transmit a signal similar to the actual threat to the aircraft under test with high power was designed. The high-power threat signal simulator should be able to transmit broadband (UHF band, L band, S band, X band) communication signals and radar signals, and control to transmit signals accurately directed to the aircraft through interfacing tracking radar. The signal strength of the developed equipment is 63 dBm to 93 dBm or more depending on type of signal, and the tracking precision is less than 0.1 degree, which satisfies the required performance. And it was confirmed that the antenna of the high-power threat signal simulator can accurately direct the signal to the aircraft position through the tracking radar interfacing.

L-band Pulsed Doppler Radar Development for Main Battle Tank (전차 탑재 L-밴드 펄수 도플러 레이더 설계 및 제작)

  • Park, Gyu-Churl;Ha, Jong-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.580-588
    • /
    • 2009
  • A Missile Warning Radar is an essential sensor for active protection system to detect antitank missile in all weather environments. This paper presents the design, development, and test results of L-band pulsed Doppler radar system for main battle tank. This radar system consists of 3 LRUs, which include antenna unit, transmitter and receiver unit and radar signal & data processing unit. The developed core technologies include the patch antenna, SSPA transmitter, coherent I/Q detector, DSP based Doppler FFT filter, adaptive CFAR, SIW tracking capability, and threat decision. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test.

Direction Finding and Tracking using Single-Ring Circular Array Antenna and Space Division Table (단원형배열안테나와 공간분할테이블을 이용한 방향탐지 및 추적)

  • Park, Hyeongyu;Woo, Daewoong;Kim, Jaesik;Park, Jinsung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 2022
  • Single-ring circular array antennas can be applied to direction finding systems in order to use nose-section in other purposes, and the interferometry is a proper direction finding method to those systems. We usually make the interferometer baseline long enough to achieve good angular accuracy. However, an interferometer with baseline longer than a half-wavelength has the ambiguity problem. In this paper, we present a novel method for solving the ambiguity problem in interferometry systems. This technique is based on the amplitude comparison method and the space division table, and it can place a target within the angular region in which the ambiguity problem does not occur by roughly estimating direction-of-arrival. The Monte Carlo simulation results show that proposed method can effectively remove the ambiguity problem in the system.

Stabilization System for Mobile Antenna Gimbal based on Dynamic Characteristics Analysis (동특성 해석에 기반한 이동용 안테나 김발 안정화 시스템)

  • Lee, Ki-Nam;Lee, Byoung-Ho;Lee, Jeung;Kim, Jie-Eok;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.851-856
    • /
    • 2013
  • Recently, as the tactical environment has changedto one of network-centric warfare, where all components are connected through a network, much emphasis has been placed on the use of an artificial satellite for achieving high communication speeds. To provide a high-quality artificial satellite link, stabilization is very important in a platform. Previous stabilization control techniques used PI control, which is commonly used for vessels. However, for ground terminals that require a higher communication speed, the antenna should move faster to track an artificial satellite within a short period of time. Moreover, the terminals must be equipped with proper sensors and algorithms so that they can detect and compensate for external disturbances while tracking the artificial satellite. In this study, through the analysis of the dynamic model of an antenna system, a stabilization algorithm for ground terminals was proposed;this algorithm shows high isolation performance in the low-frequency range and includes $PI^2$ control.

Miniaturization Development of Transmit/Receive Module using a 10W MEMS switch (10W급 MEMS 스위치를 이용한 송수신모듈 소형화 개발)

  • Yi, Hui-min;Jun, Byoung-chul;Lee, Bok-hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2417-2424
    • /
    • 2016
  • Small size and light weight is very important for components used in radar mounted platform such as airborne radar. Recently, the active phased array radar is developed as an array of antennas for thousands of transmit/receive modules to be used as a multi-function radar that can detect and track targets. In this case, the size and weight of the transmit/receive modules are critical factor for developing the radar. In this paper, we developed a compact transmit/receive module using the 10W RF MEMS switch domestically localizing and reduced the circuit area to about 86.5% compared to using a circulator. The developed module satisfies not only electrical requirements but also MIL-STD's environmental specifications. So it can be used in a military device. It can be used at adaptive tunable receivers, reconfigurable smart active antennas and wide band beam electrical steering antennas.

Design for Back-up of Ship's Navigation System using UAV in Radio Frequency Interference Environment (전파간섭환경에서 UAV를 활용한 선박의 백업항법시스템 설계)

  • Park, Sul Gee;Son, Pyo-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.289-295
    • /
    • 2019
  • Maritime back-up navigation system in port approach requires a horizontal accuracy of 10 meters in IALA (International Association of Lighthouse Authorities) recommendations. eLoran which is a best back-up navigation system that satisfies accuracy requirement has poor navigation performance depending signal environments. Especially, noise caused by multipath and electronic devices around eLoran antenna affects navigation performance. In this paper, Ship based Navigation Back-up system using UAV on Interference is designed to satisfy horizontal accuracy requirement. To improve the eLoran signal environment, UAVs are equipped with camera, IMU sensor and eLoran antenna and receivers. This proposed system is designed to receive eLoran signal through UAV-based receiver and control UAV's position and attitude within Landmark around area. The ship-based positioning using eLoran signal, vision and attitude information received from UAV satisfy resilient and robust navigation requirements.

Home-range Analysis of Pipistrelle Bat (Pipistrellus abramus) in Non-Reproductive Season by Using Radio-tracking (원격무선추적을 이용한 집박쥐의 비번식기 행동권 분석)

  • Chung, Chul-Un;Han, Sang-Hoon;Lee, Chong-Il
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.4
    • /
    • pp.487-492
    • /
    • 2010
  • This study was conducted to analyze the home range size of Pipistrellus abramus in non-reproductive season. The survey was conducted in the day-roosting site of Pipistrellus abramus located in Gyeongju City(North Gyeongsang Province). We radio-tracked six Pipistrellus abramus(male 3, female 3) and LTM single stage radio transmitter(0.38g), R2000 ATS receiver, three element yagi antenna, roof mounted antenna and ArcGIS 3.3(ESRI, Animal Movement Extension 2.0) were used to locate bats and home range analyze. The home range sizes of the 6 radio-tracked Pipistrellus abramus ranged from 8.97 to 19.07ha(Maen $14.46{\pm}3.44ha$). Mean home range size of female($16.83{\pm}1.96ha$) was larger than that of male($12.08{\pm}2.96ha$) but there were no significant differences in home range sizes between male and female(t=2.32, p>0.05). Also, mean maximum distances from the roost was $468.73{\pm}94.38m$ but there were no significant differences between sexes(female, $422.73{\pm}10.38m$; male, $514.74{\pm}125.74m$; t=-1.26, p>0.05).