수리나 과학 영역의 학습은 원리 이해와 응용을 위주로 함에도 불구하고 기존의 교육용 소프트웨어 제품들은 단순 주입식이나 단답식의 학습을 지원하는 것이 대부분이어서 높은 학습 성과를 기대하기는 어려운 실정이다. 인공 지능 연구에서 지식 표현 체계나 탐색, 추론 기법이 학습기 설계에 도입되어 증명기, 모의 실험기 유형의 학습기 연구에는 상당한 진전을 보아 왔으나 여전히 실용적 수준이라 할 수는 없고 특히 문제 해결을 지원하는 학습기는 설계 모형조차 제시되지 못하고 있다. 본 연구가 설계한 기하 문제 학습기는 학습과 병행하는 동적 추론을 구사한다. 실시간 문제 해결을 지원하기 위한 정보 구성요소로서 명제, 가설 및 연산자에 의해 문제 공간을 정의하고 이들의 생성과 검증을 추론의 주요 대상으로 하는 대화식 문제 학습의 메카니즘을 탐구하였다. 성취한 결과로서 기하 문제 해결에서 필수 불가결한 요소임에도 불구, 기존 시스템이 간과해 왔던 대수 처리를 위한 일련의 추론 전략을 연계적으로 구사함으로서 실용성있는 문제 학습기의 설계 모형을 얻었다. 제안 모형은 물리, 전자 회로 등 타 과학 영역의 문제 학습기 설계에도 적용될 수 있다.
차세대 인터넷 기술로 각광받은 시맨틱 웹의 완전한 사용은 도메인 영역의 지식표현과 지식추론의 성능에 달려있다. 특히 표현된 지식을 기계가 이해하여 인간과 도메인들 간의 상호작용을 위해서는 더욱 형식적이고 명시적인 지식과 추론 표현이 기반된 웹 온톨로지 구축이 중요하다. 더구나 웹 온톨로지간의 상호작용은 시맨틱 웹의 기술적 완성을 위한 중요 요소이나 현재 웹 온톨로지의 구축을 위한 표준화된 모델링 방법의 부족으로 인해, 구축된 웹 온톨로지의 상호작용과 이해가 어려운 상황이다. 따라서 이같은 문제를 해결하기 위해 본 논문은 온톨로지의 지식 표현과 추론에 따른 단계를 명확하게 정의하고 정의된 각 단계에 따라 기술논리의 TBox와 ABox의 지식표현 구조와 SWRL 기반의 추론 규칙을 바탕으로 하는 웹 온톨로지 모델링 방법을 제안한다. 제안된 방법의 성능 검증을 위해 제안된 웹 온톨로지 모델링 과정에 따라 웹 온톨로지들을 구축하였고, 구축된 웹 온톨로지들의 추론에 따른 상호작용 성능을 실험하여 본 논문의 유용성을 입증하였다.
서비스 로봇의 물체 인식은 배달, 심부름 같은 로봇이 수행하는 대부분의 서비스를 위해 매우 중요하다. 기존의 방법은 산업 환경에서 기하학적 모델에 기반 하여 물체를 인식하였으나, 환경 조건이 변화하고 로봇의 이동이 발생하는 실내 환경에서는 로봇의 위치에 따라 영상 속에서 물체가 가려져 있거나 작을 수 있어 인식이 잘되지 않는 상황이 발생한다. 이러한 불확실한 상황을 해결하기 위해 본 논문에서는 영상에서 인식된 물체들을 컨텍스트 정보로 사용하여 관심 있는 물체의 존재를 추론하기 위한 방법을 제안한다. 이를 위해 베이지안 네트워크와 온톨로지를 함께 사용하여 확률적 프레임 안에서 도메인 지식을 모델링하기 위한 방법과 추론 모델의 확장을 위해 동적으로 베이지안 네트워크를 생성하고 추론하는 방법을 제안한다. 실험을 통해서 이러한 방법의 성능을 검증하였고 확률적 모델 안에서 귀납적 추론이 갖는 장점을 확인할 수 있었다.
LPC열로 구성된 음성패턴의 주파수변동을 해결하기위해 LPC와 스펙트럼, LPC차수와 스펙트럼의 관계를 고찰하여 새로운 형태의 멤버쉽함수를 제안하였다. 또한, 시간변동을 해결하기위해서는 음성구간을 여러구간으로 등간격분할하는 다구간 등분할법을 사용하였으며, 이때 오인식은 주로 동일음절이 같은 발성위치에 있을때 발생되었다. 이러한 오인식을 줄이기위해 제안된 멤버쉽함수로 퍼지추론한뒤 구간별 확신도에 가중치를 부여하고, 세번째후보까지를 인식대상으로 하는 판정알고리즘을 제안하였다. 본 방법의 타당성을 검증하기위해, DDD지역명 28개를 대상으로 인식실험한결과, 삼각형멤버쉽함수에 의한 퍼지추론은 $92.0\%$, 삼각형멤버쉽함수에의한 퍼지추론과 판정알고리즘은 $92.9\%$, 제안된 멤버쉽함수에의한 퍼지추론과 판정알고리즘은 $93.8\%$의 인식률을 보였다.
로지스틱 회귀 모형은 다양한 분야에서 범주형 종속 변수를 예측하거나 분류하기 위한 모형으로 많이 사용되고 있다. 로지스틱 회귀 모형에 대한 전통적인 베이지안 추론 기법으로 메트로폴리스-헤이스팅스 알고리즘이 많이 사용되었지만, 수렴의 속도가 느리고 제안 분포에 대한 적절성을 보장하기 어렵다. 따라서, 본 논문에서는 모형에 대한 베이지안 추론 방법으로 Frühwirth-Schnatter와 Frühwirth (2007)에서 제안된 보조 혼합 샘플링(auxiliary mixture sampling) 기법을 사용하였다. 이 방법은 모형의 선형성과 정규성을 만족시키기 위해 두 단계에 거쳐 잠재변수를 도입하며, 결과적으로 깁스 샘플링을 통한 추론을 가능하게 한다. 제안한 모형의 효과를 검증하기 위해 2020년 지역사회 건강조사 당뇨병 자료에 적용하여 메트로폴리스-헤이스팅스를 사용한 모형과 추론 결과를 비교 분석하였다. 또한, 다양한 분류 모형들과 본 논문에서 제안한 모형의 분류 성능을 비교한 결과 제안된 모형이 분류 분석에서도 좋은 성능을 보이는 것을 확인할 수 있었다.
본 논문은 객체 위치식별 알고리즘의 성능을 향상하기 위한 레이블 재할당 방법을 제안한다. 제안한 방법은 추론 단계와 재할당 단계로 구분한다. 추론 단계에서는 학습된 모델로부터 사전 지정된 크기에 따라 다중 스케일 추론을 수행한 뒤, 이를 마스킹한 영상을 다시 한번 추론하여 강인한 클래스 종류의 추론 결과를 얻는다. 재할당 단계에서는 박스간의 IoU를 계산하여 중복 박스를 제거하고, 박스와 클래스의 빈도를 계산하여 지배적 클래스를 다시 할당하였다. 제안한 방법을 검증하기 위하여 공사현장 안전장비 인식 영상 데이터 세트에 레이블 재할당 방법을 적용하고 이를 YOLOX-L 객체 탐지 모델에서 학습하였다. 실험 결과 적용 전 대비 mAP가 3.9% 향상하여 51.07%를 달성하였으며 AP_S를 3배 이상 향상하여 14.53%를 달성하였다. 실험 결과를 통해 레이블 재할당 알고리즘이 더 우수한 성능의 모델을 훈련해 냄을 확인하였다.
재무 분야에서는 주식 시장에서 투자자들의 행동형태에 대해 많은 연구가 있었다. 본 연구에서는 주식 투자자들의 주식에 대한 관심 정도가 주식의 수익률에 영향을 미치는 효과를 나타내는 관심효과(attention effect)를 실제 자료분석을 통해 검증하고자 한다. 이러한 효과를 실증적인 자료분석으로부터 검증하기는 쉽지 않았는데, 그 이유는 관심정도를 객관화하여 측정하는 것이 어려운 문제였기 때문이다. 그런데, Da 등 (2011)는 구글 검색창에서의 검색빈도로 관심정도를 측정하고, 이를 바탕으로 미국 주식시장에서의 관심효과를 검증하였다. 본 논문에서는 다음커뮤니케이션이 운영하는 주식 채틱방에서 주식종목에 대한 언급횟수에 대한 순위를 통해 관심정도를 측정하고, 언급횟수에 대한 순위가 높을수록 주식의 수익률이 높아졌다고 할 수 있는지 한국 주식시장에서의 관심효과를 검증하고자 하였다. 이를 위해, 관심효과를 순서제약이 있는 가설로 표현하고, 이에 대한 가능도비 검정절차를 제안하였으며 실제 데이터에 적용해 보았다.
본 논문에서는 ATM 망에서의 효율적인 트래픽 제어를 위하여 언어적인 규칙과 퍼지 추론부로 구성되는 퍼지로직에서 퍼지 규칙을 생성하였다. 퍼지 규칙 내부에 포함된 제어 파라메터들은 주어진 성능 함수를 최소화하도록 학습된다 즉, 발생된 저, 고순위 트래픽 도착 비율에 따라 퍼지집합 이론을 통하여 추론한 후 그 비퍼지화값으로 접속된 트래픽에 대해 버퍼에서의 임계값을 제어하도록 하였다. 또한, 생성된 퍼지 규칙의 타당성을 검증하기 위하여 MATLAB6.5에서와 온라인 빌드업으로 규칙에 대한 실험결과를 보인다. 그 결과, 고, 저 트래픽 도착 비율에 따라 효율적으로 버퍼에서의 임계값이 제어됨을 확인하였다.
본 논문은 능동카메라가 장착된 이동로봇의 장애물 회피를 위한 퍼지추론방법 제시하였다. 영상센서를 이용하여 상황적 판단에 근거한 명령융합을 사용하여 미지의 환경에서의 목적지까지의 지능적인 탐색을 수행하도록 하였다. 본 연구를 검증하기 위하여 환경모델과 센서데이터에 기반 한 이동로봇의 경로생성을 위한 물리적 센서융합을 시도하지 않고, 환경에 따른 각각의 로봇의 주행행동을 제어하기 위한 명령융합 적용하였다. 주행을 위한 전략으로는 목적지 접근과 장애물 회피를 수행할 수 있도록 퍼지규칙 조합을 통해 판단하도록 수행하였다. 제안한 방법을 검증하기 위하여 영상데이터를 사용한 성공적인 주행 실험 결과를 제시하였다.
스마트 그리드 안에서 고안된 스마트 미터는 우리가 사용하는 전력 신호를 실시간으로 데이터화해서 전력 공급단의 메인 서버로 전송한다. 이를 통해 전력 관리의 효율성은 증가한 반면, 사용자의 정보를 담은 데이터의 보안 문제가 새로운 위협으로 부상하였다. 본 논문은 스마트 미터에서 추출한 전력 데이터를 통해 가정 내 기기의 식별 및 기기별 사용패턴에 대한 추론을 보안 관점에서 해석함으로써 스마트 기기 환경에서 데이터 노출의 위협을 지적한다. 주성분분석(Principal Component Analysis)으로 데이터의 특징을 추출하였고 k-근접 이웃(k- Nearest Neighbor)분류기로 기기를 식별하고 기기상태를 추론하였으며, 검증방법으로는 10차 교차검증(10-fold Cross Validation)을 활용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.