• Title/Summary/Keyword: 추론 검증

Search Result 460, Processing Time 0.037 seconds

The study to measure of the BTX concentration using ANN (인공신경망을 이용한 BTX 농도 측정에 관한 연구)

  • 정영창;김동진;홍철호;이장훈;권혁구
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Air qualify monitoring if a primary activity for industrial and social environment. Especially, the VOCs(Volatile Organic Compounds) are very harmful for human and environment. Throughout this research. we designed sensor array with various kinds of gas sensor, and the recognition algorithm with ANN(Artificial Neural Network : BP), respectively. We have designed system to recognize various kinds and quantities of VOCs, such as benzene, tolylene, and xylene.

  • PDF

Ontology Knowledge Base Scheme for User Query Semantic Interpretation (사용자 질의 의미 해석을 위한 온톨로지 지식베이스 스키마 구축)

  • Doh, Hana;Lee, Moo-Hun;Jeong, Hoon;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.285-292
    • /
    • 2013
  • The method of recent information retrieval passes into an semantic search to provide more accurate results than keyword-based search. But in common user case, they are still accustomed to using existing keyword-based search. Hence they are hard to create a typed structured query language. In this paper, we propose to ontology knowledge-base scheme for query interpretation of these user. The proposed scheme was designed based on the OWL-DL for description logic reasoning, it can provide a richer representation of the relationship between the object by using SWRL(Semantic Web Rule Language). Finally, we are describe the experimental results of the similarity measurement for verification of a user query semantic interpretation.

Approximate Estimating Model Using the Case Based Reasoning - PSC BEAM Bridge - (사례기반추론을 이용한 개략공사비 산정모델 개발 - PSC BEAM교를 중심으로 -)

  • Kang, Chan-Sung;Lee, Geon-Hee;Kim, Kyoung-Min;Kim, Kyong-Ju
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.445-448
    • /
    • 2008
  • This study attempts to estimate approximate cost on construction of PSC BEAM Bridge using Case-Based Reasoning and suggests approximate estimation model at the planning and design stage. This paper suggests phased influence factors on construction cost and approximate estimation model for integrated project cost management.

  • PDF

Reading Comprehension requiring Discrete Reasoning Over Paragraphs for Korean (단락에 대한 이산 추론을 요구하는 한국어 기계 독해)

  • Kim, Gyeong-min;Seo, Jaehyung;Lee, Soomin;Lim, Heui-seok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.439-443
    • /
    • 2021
  • 기계 독해는 단락과 질의가 주어졌을 때 단락 내 정답을 찾는 자연어 처리 태스크이다. 최근 벤치마킹 데이터셋에서 사전학습 언어모델을 기반으로 빠른 발전을 보이며 특정 데이터셋에서 인간의 성능을 뛰어넘는 성과를 거두고 있다. 그러나 이는 단락 내 범위(span)에서 추출된 정보에 관한 것으로, 실제 연산을 요구하는 질의에 대한 응답에는 한계가 있다. 본 논문에서는 기존 범위 내에서 응답이 가능할 뿐만이 아니라, 연산에 관한 이산 추론을 요구하는 단락 및 질의에 대해서도 응답이 가능한 기계 독해 모델의 효과성을 검증하고자 한다. 이를 위해 영어 DROP (Discrete Reasoning Over the content of Paragraphs, DROP) 데이터셋으로부터 1,794개의 질의응답 쌍을 Google Translator API v2를 사용하여 한국어로 번역 및 정제하여 KoDROP (Korean DROP, KoDROP) 데이터셋을 구축하였다. 단락 및 질의를 참조하여 연산을 수행하기 위한 의미 태그를 한국어 KoBERT 및 KoELECTRA에 접목하여, 숫자 인식이 가능한 KoNABERT, KoNAELECTRA 모델을 생성하였다. 실험 결과, KoDROP 데이터셋은 기존 기계 독해 데이터셋과 비교하여 단락에 대한 더욱 포괄적인 이해와 연산 정보를 요구하였으며, 가장 높은 성능을 기록한 KoNAELECTRA는 KoBERT과 비교하여 F1, EM에서 모두 19.20의 월등한 성능 향상을 보였다.

  • PDF

The Needs Assessment of Middle School Students for Practical Reasoning Home Economics Classes in the Distance Learning Environment (원격학습 환경에서 가정교과 실천적 추론 과정에 대한 중학생의 요구도 조사연구)

  • Choi, Seong-Youn
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • The purpose of this study was to investigate the needs of middle school students for the practical reasoning in a distance learning environment, to verify the needs differences based on the learner's personal characteristics, student-teacher interaction, and student-student interaction, and to investigate the relationships among student-teacher interaction, voluntary participation of students, and the students' perception of the extent to which practical reasoning is implemented in distance learning. For this purpose, 1,842 middle school students from seven schools in Gyeonggi, Daejeon, Chungbuk, and Sejong areas were surveyed online to investigate the importance of the practical reasoning questions and the how much practical reasoning is implemented in current distance learning. Among them, 1,095 responses were used for final analysis and descriptive statistics, independent sample t-test, one-way ANOVA, and path analysis were conducted. As a result of the study, first, middle school students acknowledged that the practical reasoning was important with the importance average 3.76. Based on the locus for focus model, the priorities of the needs in home economics class were examined, and the values and importance of the problem, and the ramification of the solution were considered to be of high priority. Second, characteristics of middle school students, student-teacher interaction and student-student interaction were found to have positive influence on needs for practical reasoning, while no difference were found by gender or voluntary participation in distance learning. Third, the voluntary participation of students and the student-teacher interaction in distance learning had a positive (+) significant effect on perceived implementation of practical reasoning, yet negative (-) significant effect on needs for practical reasoning.

A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels (터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구)

  • Kyu Beom Lee;Hyu-Soung Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • In the application of deep learning object detection via CCTV in tunnels, a large number of false positive detections occur due to the poor environmental conditions of tunnels, such as low illumination and severe perspective effect. This problem directly impacts the reliability of the tunnel CCTV-based accident detection system reliant on object detection performance. Hence, it is necessary to reduce the number of false positive detections while also enhancing the number of true positive detections. Based on a deep learning object detection model, this paper proposes a false positive data training method that not only reduces false positives but also improves true positive detection performance through retraining of false positive data. This paper's false positive data training method is based on the following steps: initial training of a training dataset - inference of a validation dataset - correction of false positive data and dataset composition - addition to the training dataset and retraining. In this paper, experiments were conducted to verify the performance of this method. First, the optimal hyperparameters of the deep learning object detection model to be applied in this experiment were determined through previous experiments. Then, in this experiment, training image format was determined, and experiments were conducted sequentially to check the long-term performance improvement through retraining of repeated false detection datasets. As a result, in the first experiment, it was found that the inclusion of the background in the inferred image was more advantageous for object detection performance than the removal of the background excluding the object. In the second experiment, it was found that retraining by accumulating false positives from each level of retraining was more advantageous than retraining independently for each level of retraining in terms of continuous improvement of object detection performance. After retraining the false positive data with the method determined in the two experiments, the car object class showed excellent inference performance with an AP value of 0.95 or higher after the first retraining, and by the fifth retraining, the inference performance was improved by about 1.06 times compared to the initial inference. And the person object class continued to improve its inference performance as retraining progressed, and by the 18th retraining, it showed that it could self-improve its inference performance by more than 2.3 times compared to the initial inference.

Active Control of Earthquake Responses Using Fuzzy Supervisory Control Technique (퍼지관리제어기법을 이용한 지진응답의 능동제어)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.75-81
    • /
    • 2001
  • Fuzzy supervisory control method is studied for the active control of earthquake excited structures. The proposed algorithm supervises and tunes previously designed control gains by evaluating the state of a structure through the fuzzy inference mechanism, which uses the information of relative displacements and velocities. Example designs and numerical simulations of earthquake exited three degrees of freedom structures are performed to prove the validity of the proposed control algorithm. Comparative results with conventional LQR method show that the proposed method is effective for the vibration suppression of earthquake excited structures.

  • PDF

표적 마케팅을 위한 CBR 시스템의 유사 임계치 및 커버리지의 동시 최적화 모형

  • An, Hyeon-Cheol
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.605-610
    • /
    • 2007
  • 사례기반추론(CBR)은 많은 장점으로 인해, 생산, 재무, 마케팅 등의 분야의 다양한 경영의사결정문제 해결에 적용되어 왔다. 그러나, 효과적인 CBR 시스템을 설계, 구축하기 위해서는 연구자가 직관적으로 설정해야 할 많은 변수들이 존재한다. 본 연구에서는 이러한 CBR의 여러 설계요소들 중, '결합할 유사사례의 선택' 과 관련해, CBR이 보다 개선된 형태로 경영문제 해결에 응용될 수 있는 모형을 제시하고 있다. 본 연구의 제안모형은 결합할 유사사례를 선택하는 기준으로 특정 사례수(k-NN)나 유사도의 상대적 비율을 사용하는 기존의 CBR과 달리 0에서 1사이의 값을 갖는 절대적 유사 임계치를 적용하고 있다. 다만, 절대적 유사 임계치를 사용할 때, 그 값이 작아질 경우 예측결과의 생성이 과도하게 이루어지지 않을 수 있는 문제를 해결하기 위해, 커버리지를 모형에 함께 반영하여 사용자가 원하는 수준의 커버리지는 유지한 상태에서 가장 효과적인 유사 사례를 찾아, 추론을 수행할 수 있도록 설계하였다. 제안모형을 검증하기 위해, 본 연구에서는 이 모형을 실제 인터넷 쇼핑몰의 고객 발굴 사례에 적용해 보았다. 이를 통해, 제안모형의 적용가능성을 확인하고, 향후 추가연구가 요구되는 개선방향을 고찰해 보았다.

  • PDF

퍼지 추론에 의한 제어방법

  • 변증남;김동화
    • 전기의세계
    • /
    • v.39 no.12
    • /
    • pp.21-32
    • /
    • 1990
  • 퍼지 논리를 이용한 제어시스템에 관하여 핵심 개념을 중심으로 기술하고자 한다. 요약컨데 이 퍼지제어기의 특징은 1) Parallel(distributed) control 2) logic control 3) linguistic control등이며 퍼지 제어가 효과적일 수 있는 제어대상(plant)로서는 수학적 모델을 적용하기 힘든 시스템으로서 경험적으로 또는 수동적인 방법으로 제어가 잘되고 있는 대상을 들 수 있다. 그 뿐만 아니라 간단한 제어기가 필요한 경우로서 보다 효과적인 제어측 Software를 쓰거나 센서 또는 필터없이 사용가능하고, Inverted Penedulum의 자세 제어처럼 정확성보다는 속도 응답 제어가 요구되는 경우 등에 효과적으로 쓸 수 있는 것으로 알려지고 있다. Fuzzy 제어는 지식 베이스의 규모에서 인공지능형 Expert System보다 Compact하고 선형.비선형 플랜트에 공히 이용될 수 있으며, 설계자는 오퍼레이터와의 접촉을 통해 룰을 구축하므로 사용자가 시스템을 이해하기 쉬운 잇점등이 있기도 한다. 그러나 가장 큰 문제는 구축해 놓은 시스템의 안전성(Stability)를 이론적으로 사전에 검증하기가 어렵고, 같은 제어대상이라 할지라도 추론방법, 소속함수의 형태선택, 룰수 등에 따라 제어성능이 바뀔수 있으나, 무엇이 어떤 영향을 주는지 규명되지 않은점 등 여러가지 연구되어야 할 내용이 많이 있다.

  • PDF

Knowledge-Based methodologies for the Credit Rating : Application and Comparison (신용카드 고객의 신용 예측을 위한 지식기반 방법들: 적용 및 비교 연구)

  • 주석진;김재경;성태경;김중한
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.49-64
    • /
    • 1999
  • 본 연구는 백화점 고객이 신용 카드 신청 요구 시에 작성되는 가입 정보 및 사용되고 있는 고객의 거래 정보는 카드 사용 패턴으로 신용도를 예측하는 여러 방법론을 제시하고 성능을 비교하였다. 가입 정보를 분석하기 위해 역전파 신경망(Back-Propagation Neural Network, BPNN), 사례기반추론(Case-Based reasoning)을, 거래 정보를 분석하기 위해 역전파 신경망과 더불어 시간지연 신경망(Time-Delayed Neural Network, TDNN)을 각각 사용하여 그 결과를 비교하였다. 또한 전체시스템의 적중률을 높이기 위햐여, ID3와 신경망을 이용한 Meta-Leaning 방법을 제시하였으며, Meta-Learning 방법과 다른 방법들을 비교, 분석을 하였다. 본 연구에서는 모형 수립과 검증을 위하여 T백화점의 실제 신용 카드 가입 고객 데이터를 이용하여 실험하였다. 데이터의 성격에 따라 각 모델의 예측력에는 차이가 나타났으나, 신경망 모형의 예측력이 우수하였으며, 시간적 특성을 고려하는 시간지연 신경회로망 모형의 예측력은 더욱 우수하게 나타났다. 또한 Meta-Learning 모형을 사용하면 예측력이 더 높아진다는 것을 확인할 수 있었다.

  • PDF