• Title/Summary/Keyword: 추력제어기

Search Result 266, Processing Time 0.024 seconds

Control Design of the High Performance Nozzle System(Jet Vane Type) (추력방향제어 시스템 Controller)

  • 이명준;김성진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.24-24
    • /
    • 1998
  • 미사일의 수직 발사 시스템은 수송 및 발사에 필요한 공간을 작게 차지하고 간편하여 각국이 선호하고 있다. 그러나 미사일이 수직발사 초기에는 매우 낮은 속도로 상승하므로 미사일의 방향조정용 Fin의 공력이 발생하지 않기 때문에 초기에 Jet Vane 등의 기계장치를 이용 추력의 방향을 제어하여 마사일의 방향을 목표로 향하도록 하는 Controller가 필요하게 된다. 본 Controller는 DC Motor와 감속기를 이용하여 Vane을 제어 할 수 있도록 설계되어 있으며 1차적으로는 지상 시험용 Controller를 개발 완료된 상태에 있다. 추후 실제 사용하기 위한 Controller를 만들기 위해서는 Main 유도장치와의 상호 Interface 관계를 고려하여 설계되어야 하며 소량 경량화 및 충분한 신뢰성을 갖춘 Controller를 개발하여야 한다.

  • PDF

이원 추력기의 성능 모델링 연구

  • Ham, Mi-Suk;Kim, Yoo;Park, Eung-Sik;Park, Bong-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.82-83
    • /
    • 2002
  • 궤도상에 올려진 위성들은 인형의 궤도 운행을 하게 된다. 그러나 지구가 완전한 구형이 아니고 태양과 달의 인력이 작용하여 위성에 섭동이 발생하게 된다. 그리고 무중력 상태의 우주이므로 태양풍이나 미세 운석 그리고 위성체 내부의 가스 누출이나 내부의 토크 변화에 의해 위성 자세에 조금의 변동을 야기한다. 통신 위성의 경우 지상의 한 지점을 계속 향하고 있어야 하므로 정기적인 자세제어가 필요하다. 위성의 섭동에 의해 EWSK(East-West station keeping)나 NSSK(North-South station keeping)를 하기 위해 추력 모델은 단일 $\Delta$$\upsilon$기동이나 회전 세차 운동(spin precession maneuver)을 지원해야 한다. 위성은 주어진 임무를 수행하는데 필요한 $\Delta$$\upsilon$기동을 위해 적절한 성능의 추력기와 임무기간 동안 사용할 적절한 양의 추진제를 탑재하고 있다. 지상에서 필요한 임무를 수행하기 위해 위성에 지령을 하였을 때, 추력기가 정상작동을 하였는지 그리고 잔류 추진제가 어느 정도 인지를 정확히 알 수 있어야 한다.

  • PDF

Design of Path Tracking Controller Based on Thrusters for the Lunar Lander Demonstrator (달 착륙선 지상시험모델의 경로 추종을 위한 추력기 기반 제어기 설계)

  • Kim, Kwang-Jin;Lee, Jeong-Sook;Lee, Sang-Chul;Ko, Sang-Ho;Rhyu, Dong-Young;Ju, Gwang-Hyeok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.37-43
    • /
    • 2011
  • Lunar exploration program has been prepared with the aim of launch in the 2020's. As part of it, a lunar lander demonstrator has been developed which is the model for verifying all the system, such as structure, propulsion and control system before launch to deep space. After verifying all the system, the demonstrator will be evaluated by flight test. This paper deals with path tracking controller based on thrusters for the demonstrator. For this, first we derive equations of motion according to the allocation of thrusters and design the path tracking controller. The signal generated from the controller is continuous so PWPF(Pulse-Width Pulse-Frequency) modulator is adopted for generating on/off signal. Finally MATLAB simulation is performed for evaluating the path tracking ability and the final landing velocity.

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster (MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구)

  • Kim, Hyeonah;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.300-309
    • /
    • 2017
  • A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.

Development of Xenon Feed System for a Hall-Effect Thruster to Space-propulsion Applications (우주추진용 홀방식의 전기추력기를 위한 제논연료공급장치 개발)

  • Kim, Youn-Ho;Kang, Seong-Min;Jung, Yun-Hwang;Seon, Jong-Ho;Wee, Jung-Hyun;Yoon, Ho-Sung;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.84-89
    • /
    • 2011
  • A Xenon Feed System (XFS) has been developed for hall-effect thruster to small satellite space-propulsion system applications. The XFS delivers low pressure gas to the Anode and Cathode of thruster head unit from a xenon storage tank. Accurate throttling of the propellant mass flow rate is independently required for each channel of the thruster head unit. The mass flow rate to each channel is controlled using the accumulator tank pressure regulation through a micron orifice and isolation valve. This paper discusses the Xenon Feed System design including the component selections, performance estimation and functional test.

Water-flow Test/Performance Evaluation of Nonimpinging-type Injector used in the Hydrazine Thruster of Medium-level Thrust (중형급 하이드라진 추력기에 장착되는 비충돌형 인젝터의 수류시험 및 성능평가)

  • Jung, Hun;Kim, Jong-Hyun;Kim, Jeong-Soo;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.139-142
    • /
    • 2011
  • A water-flow test for acceptance verification is carried out for a nonimpinging-type injector prior to the design-performance verification of hydrazine thruster under development. The injector used in the experiment is to be equipped on the hydrazine thruster producing 70 N of nominal thrust at an inlet pressure of 24.6 $kg_f/cm^2$. It is observed that there exist varying characteristics of atomization among the injector-nozzle orifices caused by a fabrication error which can be judged from a microscopic standpoint. On the other hand, all of the injector orifices are placed within the design criteria in an injection-angle performance.

  • PDF

A Study on Thrust Characteristics of a Small solid Rocket with Variation of Grain Configuration (소형 고체 로켓 추진제의 그레인의 형상 변화에 따른 추력 특성 연구)

  • Go, Tae-Sig;Sim, Jin-Ho;Yong, Seung-Juu;Lee, Byung-Gil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.349-352
    • /
    • 2008
  • This work is to observe combustion characteristics depending on variation of the solid propellent grain configuration. The LRE (Liquid Rocket Engine) enables adjusting the thrust by controling the required fuel mass glow, but the SRM(Solid Rocket Motor)is not easy to adjust th thrust due to the difficulty of th fuel flow control by its combustion behavior even its configuration is simple. This difficulty can be partly solved by changing th size or the configuration of the propellant grain. In this study a proper grain configuration of a small solid rocket is selected through both the theoretical design and the experimental tests.

  • PDF

Static Structural Analysis of 75 tonf-class Engine with TVC actuation force (TVC 구동력을 고려한 75톤급 엔진 정적 구조 해석)

  • Yoo, Jaehan;Gwak, Junyoung;Kim, Okgu;Jeon, Seongmin;Jeong, Eunhwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.913-914
    • /
    • 2017
  • Structural analyses of a engine system is required in development stage for increasing structural reliability and reducing weight. Attitude of a launch vehicle during flight is controlled by combustion chamber rotation varying with TVC (thrust vector control) actuator displacements. In this study nonlinear static analysis is performed for a 75 tonf-class liquid rocket engine using before and after the TVC actuation.

  • PDF

A Control of Vibrator Using PM Excited Transverse Flux Linear Motor (영구자석 여자 횡축형 선형 전동기(TFLM)를 이용한 가진기 제어)

  • 임태윤;강도현;김종무;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.281-288
    • /
    • 2002
  • This paper has realized a control system of a vibrator using PM excited Transverse Flux Linear Motor(TFLM). Proposed vibrator can supply a vibration force up to 700[N] at rated current, wide operation range of vibration displacement and high frequency for a tested structure. Also, volume of a vibrator system can be decreased because of a high trust force rato(a thrust force per weight=N/Kg). A proposed vibrator instead of a hydraulic vibrator can improve efficiency and have may advantages of maintenance and management. A desired value command is a vibration frequency and displacement in a controller for a vibrator system and a controlled values we a instant position and velocity of a mover Output value of the controller is phase current controlled by PWM converter. In this research, Dynamic simulation has been executed for analysis of a control algorithm and dvnauuc characteristics and is compared with experimental result.

Flow Analysis in Precision Control Valve for Satellite Attitude Control (인공위성 자세제어를 위한 Direct Acting 정밀 유량 제어 밸브내의 유동해석)

  • Bae Young-Woo;Oh Ju-Young;Lee Jae-Woo;Lee Sung-Taek;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.427-430
    • /
    • 2005
  • The precision control valve flow of satellite attitude control device was analyzed in this paper, Then, force of flow in valve was calculated for plunger surface. We made an offer about basic data for optimal plunger design.

  • PDF