• Title/Summary/Keyword: 추력성능

Search Result 675, Processing Time 0.022 seconds

Test & Evaluation for the Configuration Optimization of Thrust Chamber in 70 N-class N2H4 Thruster (Part I: Pulse-mode Performance According to the Chamber Diameter Variation) (70 N급 하이드라진 추력기의 추력실 최적설계와 시험평가 (Part I: 추력실 직경변화에 따른 펄스모드 성능특성))

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.42-49
    • /
    • 2014
  • Performance evaluation was carried out for the 70 N-class hydrazine thruster whose design performance had been already verified. The pulse-mode firing test was conducted for the development model thrusters with various thrust chamber diameters. Evaluation was made by the performance parameters such as specific impulse, impulse bit, and characteristic velocity, etc: specific impulse and characteristic velocity were deteriorated as the thrust chamber diameter deviates from a standard model. Consequently, it is revealed that the performance characteristics of standard model is most superior among the test models.

Hot-Fire Test and Performance Evaluation of Small Liquid-Monopropellant Thrusters under a Vacuum Environment (단일액체추진제 소형 추력기의 진공환경 연소시험 및 성능특성 평가)

  • Kim Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.84-90
    • /
    • 2004
  • A performance evaluation is made in terms of thrust, impulse bit. and specific impulses for a set of mono-propellant hydrazine thrusters producing 0.95 lbf of nominal thrust at an inlet pressure of 350 psia. With a brief description on the hot-firing test configuration and procedures. a typical data obtained from steady-state firing mode is given directly showing the variational behavior of propellant supply pressure, mass flow rate, vacuum condition, and thrust. The performance features are successfully compared to the reference criteria of 1-lbf standard mono-propellant rocket engine. Additionally. a statistical inter-thruster treatment is concisely depicted for the justification of selected thrusters as a grouped member of flight model for spacecraft propulsion system.

Numerical Study and Thrust Prediction of Pintle-Controlled Nozzle with Split-line TVC System (스플릿라인 TVC 시스템을 적용한 핀틀 추력조절 노즐의 유동해석 및 추력 성능 예측)

  • Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.43-53
    • /
    • 2022
  • In this study, analysis of the flow characteristics of pintle-controlled nozzle with split-line TVC system and the thrust performance prediction was performed. The numerical computation was verified by comparing the thrust coefficient derived from the analysis results with the experimental data. By applying the same numerical analysis technique, the flow characteristics of nozzle were confirmed according to operating altitude, pintle stroke position and TVC angle with the 1/10 scale. As the TVC angle increased, thrust loss occurred and the tendency of AF was different depending on the position of the pintle stroke. Based on the analysis results, the relation of thrust coefficient was derived by applying the response surface methods. The thrust performance model with a slight difference of 1.2% on average from the analysis result was generated.

Steady-state Thrust Characteristics of Hydrazine Thruster for Attitude Control of Space Launch Vehicles (우주발사체 자세제어용 하이드라진 추력기의 정상상태 추력 특성)

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.48-55
    • /
    • 2012
  • An ambient hot-firing test was carried out for the hydrazine thruster which may be employed in the space launch vehicles. The thruster is designed to produce 67 N (15 $lb_f$) of nominal steady-state thrust at an inlet pressure of 2.41 MPa (350 psia). A scrutiny into the performance characteristics of thruster is made in terms of thrust, propellant supply pressure, mass flow rate, chamber pressure, and temperature at the steady-state firing mode. As a result, it is ensured that the practical performance efficiencies are above 89.1% compared to its ideal requirements.

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I))

  • 김형문;이상길;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In the present paper an attempt has been made to simulate the secondary injection-primary flow interaction in the conical rocket nozzle and to derive the performance of secondary injection thrust vector control(SITVC) system. Complex three-dimensional flowfield induced by the secondary injection is numerically analyzed by solving unsteady three-dimensional Euler equation with Beam and Warming's implicit approximate factorization method. Emphasized in the present study is the effect of secondary injection such as secondary mass flow rates and the momentum of secondary/primary nozzle flow mass rates upon the gross system performance parameters such as thrust ratio, specific impulse ratio and deflection angle. The results obtained in terms of system performance parameters show that lower secondary mass flow rate is advantageous for to reduce secondary specific impulse loss. It is further found that the nozzle with secondary jet injected downstream and interacting with fast primary flow is preferable for efficient and stable SITVC over the wide range of use with the penalty of side specific impulse loss.

  • PDF

Thruster Configuration Optimisation on COMS and Preliminary Performances Analysis (COMS의 추력기 형상 최적화 및 예비성능 분석)

  • Park, Yeong-Ung
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.114-118
    • /
    • 2006
  • This paper describes the thrusters configuration optimized in preliminary performances for COMS (Communication, Ocean and Meteorological Satellite). The exact values of the thrusters tilt angles must be frozen for the manufacturing of COMS platform based on the EUROSTAR 3000 platform as these angles depend on the spacecraft center of mass position and thrusters location, the definition process has to be performed specifically for COMB. Concerning pitch control thrusters (6, 7), South thrusters (1, 2, 3), and East/West thrusters (4. ~, their optimum positions and force orientations based on the thrusters A/B middle position and MOL (Middle Of Life) are obtained. The torques of thrusters (plume and geometrical torques) are minimized to improve the preliminary performance of thrusters.

  • PDF

Comparison Study of the Low Power Hall Thrusters Performance (소형위성용 저전력 홀 추력기의 성능 비교 연구)

  • Kang, Seong-Min;Kim, Youn-Ho;Jeong, Yun-Hwang;Seon, Jong-Ho;Lee, Jong-Sub;Seo, Mi-Hui;Choe, Won-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.195-200
    • /
    • 2011
  • A low power Hall thruster is under development for orbit maintenance of a small Earth observing satellite. Both cylindrical and annular type thrusters were manufactured and tested to characterize the performance of cylindrical Hall thrusters. Results were described through comparative analyses. Cylindrical thrusters were manufactured in two different channel diameter dimensions, 28 mm and 50 mm. Thrust, ion velocity and ion current were measured in various operating conditions. The results show that cylindrical thrusters are more efficient in mass utilization and voltage utilization, but less efficient in current utilization than annular one.

Effects of Characteristic Length Variation for Thrust Chamber on the Hot-fire Performance of Hydrazine Thruster (하이드라진 추력기의 추력실 특성길이 변화가 연소성능에 미치는 영향)

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.144-149
    • /
    • 2014
  • A ground firing test for hot-fire performance evaluation according to the characteristic length($L^*$) variation of thrust chamber was carried out for the hydrazine thruster which may be employed in space launch vehicles. A scrutiny into the performance characteristics of each thruster is made in terms of thrust, specific impulse, response characteristics, and characteristic velocity at steady-state firing mode with propellant inlet pressure of 2.41 MPa (350 psia). Through the test results, it has been verified that performance of characteristic velocity and specific impulse degrades as the characteristic length deviates from that of the standard model. Thus, it is confirmed that the thrust chamber configuration of standard model was suitably designed for the requirement specified.

A Computational Study on the Shock Structure and Thrust Performance of a Supersonic Nozzle with Overexpanded Flow (과대팽창이 발생하는 초음속노즐의 충격파 구조와 추력성능에 대한 수치적 연구)

  • Bae, Dae Seok;Choi, Hyun Ah;Kam, Ho Dong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • Overexpanded flow of an axisymmetric thruster nozzle is numerically simulated to investigate effects of nozzle pressure ratio (NPR) on the shock structure and thrust performance. The Reynolds-averaged Navier-Stokes equations with k-${\omega}$ SST turbulence model are solved utilizing FLUENT solver. As the NPR is raised, thrust performance monotonically increases with the shock structure and flow-separation point being pushed toward the nozzle exit. It is also discussed that the flow structure at nozzle-exit plane which is immediately affected by a position of nozzle-interior shocks and expansion waves, has strong influence upon the thrust performance of thruster nozzle.