• Title/Summary/Keyword: 추력기 자세제어 시스템

Search Result 67, Processing Time 0.021 seconds

A Development of the Thrusters for Space-Vehicle Maneuver/ACS and Their Application to Launch Vehicles (우주비행체 궤도기동/자세제어용 추력기의 개발과 발사체에의 활용현황)

  • Kim, Jeong-Soo;Jung, Hun;Kam, Ho-Dong;Seo, Hang-Seok;Su, Hyuk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.103-120
    • /
    • 2010
  • A development history of the thrusters used for space-vehicle orbit maneuver/attitude control is reviewed with their performance characteristics. Especially, a scrutiny is made for the current and practical application of TVC/Gimbal/Thrusters to the roll/pitch/yaw-axis control of each stage of launch vehicles. It is well perceived that a precise 3-axis attitude control system (ACS) must be equipped on the final stage of space launch vehicles (SLV) for an attainment of orbit-insertion accuracy. Under the superior reliability as well as moderate performance features, the monopropellant hydrazine thrusters occupy most of the SLV's 3-axis ACS currently operated. Domestic development status of the medium-thrust-level thruster is shortly introduced, finally.

Papers : Feasibility Study on Attitude Control of Spacecraft Using Pulsed Plasma Thrusters (논문 : 플라즈마 펄스 추력기를 이용한 인공위성 자세제어 기법 연구)

  • Ji, Hyo-Seon;Lee, Ho-Il;Lee, Hun-Gu;Tak, Min-Je
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.46-56
    • /
    • 2002
  • In this paper, the feasibility of the attitude control of a spacecraft using pulsed plasma thrusters(PPTs) is studied. The PPT consumes less propellant mass requied for the orbit management or attitude control owing to its high specific impulse characteristics, compared with traditional gas propulsion system. The PPT is expected to be highly adequete for the missions requiring long-duration operations because it has relatively long operation time and easy implementation. The feasibility of the PPT for attitude control of a small satellite system is addressed through realistic missions. The classical PD controller and a fuzzy logic controller are tested, and fuel saving fuzzy logic controller is then proposed for more flexible mission performance.

A Study on Command Generation Methods of Reaction Control System for Upper Stage Attitude Control of Launch Vehicles (발사체 상단 자세제어용 추력기시스템 명령생성방식 연구)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Choi, Kyung-Jun;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.44-54
    • /
    • 2014
  • This paper suggests two kinds of reaction control system command generation methods for upper stage attitude control of launch vehicles. The reaction control system is assumed to consist of two sets of three nozzles. One operation technology is based on mixed attitude error functions, and the other is based on command mixing functions. Both are compared via simulations. The simulation results show that the latter is comparatively preferable in terms of interference among control axes, independency of controller design and analysis among axes, and prediction of flight performance of each control axis.

Development of High Thrust $H_2O_2$ Monopropellant Thruster for Reaction Control System of Space Launch Vehicles (발사체 자세제어 적용을 위한 고추력 과산화수소 단일추진제 추력기 개발)

  • An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Seung;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Design and performance evaluation of $H_2O_2$ monopropellant thrusters to be used at reaction control of space launch vehicles were presented in this paper. Design thrust level was determined as 100, 250 Newton which is nominal thrust level for commercial space launch vehicles. Qualification thruster models including solenoid valves were developed after the reactor design were evaluated at engineering thruster models. Each thruster was evaluated by measurement of characteristic velocity, thrust, specific impulse, and pulse response times at sea level test condition.

인공위성 자세제어용 센서와 구동기

  • 김유단;방효충;김진호
    • ICROS
    • /
    • v.3 no.3
    • /
    • pp.29-35
    • /
    • 1997
  • 본 논문에서는 인공위성의 자세를 측정하는 장치로서 태양센서, 지구수평센서, 자이로스코프, 별센서, 자장계 등의 자세감지장치와 궤도조정 및 자세제어를 하기 위한 모멘텀 휠, 반작용 휠, 가스 제트 추력기 등 각종 구동장치의 기술적 특성에 대해서 검토하고자 한다. 본 논문의 주목적은 최근 국내에서 활발히 추진되고 있는 인공위성 개발 사업 관련 위성체와 관련된 일반의 관심을 증대시키고 관련 실무 지식을 소개하고자 하는데 있다.

  • PDF

Attitude Controller Design and Flight Test of KSR-III Sounding Rocket (KSR-III 과학로켓의 자세제어기 설계와 비행시험)

  • Roh, Woong-Rae;Cho, Hyun-Chul;Ahn, Jae-Myung;Choi, Hyung-Don
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.88-94
    • /
    • 2004
  • The KSR-III rocket is a liquid propellant sounding rocket and thrust vector control actuators and cold gas thrusters are used to control pitch and yaw, roll attitude respectively during thrusting phase. In this paper, the structure of designed attitude controller and gain scheduling, results of stability analysis for KSR-III rocket are presented. The attitude controller is implemented with flight software in the domestically developed INS and successfully performed its function in the flight test. The flight data are coincident with simulation results.

Control of a Satellite's Redundant Thrusters by a Control Allocation Method (여유 조종력 할당기법을 이용한 인공위성의 여유 추력기 제어)

  • Jin, Jae-Hyun;Park, Young-Woong;Park, Bong-Kyu;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.60-66
    • /
    • 2004
  • Redundant thrusters are generally adopted to satellite designs for a highly reliable attitude control system. So efficient redundancy management is required to take advantage of these redundant thrusters. In this paper, control allocation method is proposed as a method for controlling redundant thrusters. Control allocation is a method to calculate optimal distribution on redundant controls for realizing desired forces/torques. It is shown that a control allocation problem for redundant thrusters is formulated as a linear programming problem which minimizes fuel consumptions with thrusters, constraints. We also show that the proposed method is more efficient than an existing method by numerical examples.

다목적실용위성 추진시스템의 추진제 소모율 분석

  • 김정수;한조영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.8-8
    • /
    • 2000
  • 하이드라진 단기액체엔진을 장착하고 궤도에서 임무를 수행하고 있는 다목적실용 위성 추진시스템 궤도비행 초기운용 자료에 근거하여 추진제 소모율을 산정 한다. 추진시스템은 위성의 궤도각과 비행고도 조정을 위한 속도증분($\Delta$V) 및 자세제어를 위한 추력을 발생시킨다. 단기액체 추진시스템에서 추진제 소모량은 추력기 밸브의 개폐시간에 비례하고 추력 생성 효율은 추진제의 연소기 유입압력에 종속한다. 일정질량의 가압 기체 압력에 의해 연료를 공급하는 추진시스템에서 잔류 추진제 량의 감소는 연소기 유입압력의 감소를 유발하고 추진기관의 효율을 저하시키는 요인으로 작용하여 임무말기로 진행함에 따라 동일한 운동량 생성에 보다 많은 연료소모가 이루어진다.(중략)

  • PDF

Steady-state Thrust Characteristics of Hydrazine Thruster for Attitude Control of Space Launch Vehicles (우주발사체 자세제어용 하이드라진 추력기의 정상상태 추력 특성)

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.48-55
    • /
    • 2012
  • An ambient hot-firing test was carried out for the hydrazine thruster which may be employed in the space launch vehicles. The thruster is designed to produce 67 N (15 $lb_f$) of nominal steady-state thrust at an inlet pressure of 2.41 MPa (350 psia). A scrutiny into the performance characteristics of thruster is made in terms of thrust, propellant supply pressure, mass flow rate, chamber pressure, and temperature at the steady-state firing mode. As a result, it is ensured that the practical performance efficiencies are above 89.1% compared to its ideal requirements.

펄스형 플라즈마 추력기 (PPT)를 이용한 STSAT-2 자세 및 궤도제어에 대한 연구

  • 신구환;남명룡;임종태
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.61-61
    • /
    • 2004
  • 과학기술위성 1호(STSAT-1)는 위성의 자세를 제어하기 위하여 Reaction Wheel Assembly(RWA)를 적용하였으며, 위성의 무게중심에 Wheel의 회전수에 비례하는 관성모멘트를 발생시켜 자세를 제어하였다. 과학기술위성 2호(STSAT-2)는 과학기술위성 1호에 적용하였던 반작용휠(RWA)과 펄스형태로 동작시켜 위성의 자세 및 궤도제어를 위하여 요구하는 추력을 얻을 수 있는 펄스형 전기 추진시스템(Pulsed Plasma Thruster: PPT)이 탑재된다. (중략)

  • PDF