• Title/Summary/Keyword: 추계 모형

Search Result 307, Processing Time 0.029 seconds

Development and Application of Stochastic-Dynamic Storage Function Method for Combined Watersheds and Channel Routing (추계동력학적 유역 및 하도 통합 저류함수모형 개발 및 적용)

  • Lee, Dong-Hee;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1975-1979
    • /
    • 2006
  • 본 연구의 목적은 국내 홍수예경보의 일부로 사용되고 있는 유역 및 하도 저류함수모형을 칼만필터를 이용하여 실시간 홍수추적에 적합한 추계동력학적 저류함수모형으로 개발하여 그 적용을 평가하는데 있다. 기존의 저류함수모형과 본 연구의 추계동력학적 모형의 적용을 위해 낙동강 유역내의 감천 유역 중 김천 수위지점 상류유역을 선정하였다. 유출분석을 위해 김천 수위지점 상류유역을 3개의 소유역으로 구분하였고, 2002년 8월에서 2003년 8월 사이에 발생한 3개의 주요 호우사상을 선정하였다. 면적강우는 감천유역 내외에 존재하는 9개 강우관측소로부터 Thiessen 방법을 이용하여 계산하였고, 모형에 사용된 매개변수는 호우사상별로 기존의 저류함수모형의 관측치를 잘 모의하는 값을 사용하였다. 두 모형의 유출해석 결과를 도식적 및 통계적으로 분석한 결과 본 연구에서 개발된 추계동력학적 유역 및 하도 저류함수모형이 모형 효율성 계수는 $0.94{\sim}0.96$, 유출용적 및 첨두유량 오차는 10% 내외를 보이며, 기존의 모형보다 정확한 유량예측이 가능한 것으로 나타났다.

  • PDF

A REVIEW ON THE DEMAND ESTIMATION MODEL FOR THE PEDIATRIC DENTISTS IN KOREA (소아치과 전문의 수요추계 모형에 관한 고찰)

  • Lee, Moon-Young;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • The supply and demand planning the pediatric dentists is earnest, because of the start of the dental specialist system on 2008 and aging society with low fertility. Therefore in order to develop the model, that is adequate to estimate demand for the pediatric dentists, a studies on the supply and demand planing of other health manpower were reviewed. The obtained results were as follows : 1. The health demand method was appropriate for demand estimation of the pediatric dentists. 2. There was independent variables needed for demand estimation model: prevalence, utilization rate, referral rate, fertility rate, productivity, annual working days, and so on. 3. Since statistical data for application of these variables was insufficient as result of searching, questionnaire researching and discussion of specialist may be necessary. 4. Each independent variables should be inducted into an equation by using a adequate regression model and then estimated.

  • PDF

Analysis of the suitability of optimization methods for parameter estimation of stochastic rainfall model. (추계학적 강우모형의 모수 추정을 위한 최적화 기법의 적합성 분석)

  • Cho, Hyungon;Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.327-327
    • /
    • 2018
  • 돌발홍수, 집중호우 등 강우가 발생 원인되는 자연재해에 효과적으로 대응하기 위한 연구가 활발히 이루어지고 있으나 강우의 시공간 변동성과 발생과정의 복잡한 물리과정으로 인해 강우 추정에 한계를 가진다. 일반적으로 강우 추정은 물리적, 추계학적 모형을 이용하며 추계학적 모형의 점과정(point process)을 이용하여 강우를 생산한다. 추계학적 강우 모형은 관측 강우의 시간 스케일, 강우발생 빈도, 강우 강도 등 강우 구조의 특성을 반영 할 수 있다는 장점을 가지고 있으나 생산되는 강우의 구조가 추정되는 매개변수에 크게 의존한다는 점에서 실제 강우에 적합한 매개변수 추정이 중요하다. 본 연구에서는 낙동강 유역내에 있는 20개의 강우관측 지점을 대상으로 1973년-2017년까지의 강우 관측자료를 수집하였으며 추계학적 강우생성 모형으로 점과정을 이용하는 추계학적 강우생성 모형인 NSRPM(Neymann-Scott rectangular pulse model)을 선정하였다. NSRPM모형의 매개변수를 추정하기위한 최적기법으로 DFP(Davidon-Fletcher-Powell), GA(genetic algorithm), Nelder-Mead, DE(differential evolution)를 이용하여 추정된 매개변수의 적합성을 분석하고 지역특성을 고려한 매개변수 추정 기법을 제시하였다. 추정된 모형의 매개변수를 분석한 결과 DE와 Nelder-Mead 기법이 높은 적합성을 보였으며 DFP, GA기법이 상대적으로 낮은 적합도를 보였다.

  • PDF

Streamflow Estimation using Coupled Stochastic and Neural Networks Model in the Parallel Reservoir Groups (추계학적모형과 신경망모형을 연계한 병렬저수지군의 유입량산정)

  • Kim, Sung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.195-209
    • /
    • 2003
  • Spatial-Stochastic Neural Networks Model(SSNNM) is used to estimate long-term streamflow in the parallel reservoir groups. SSNNM employs two kinds of backpropagation algorithms, based on LMBP and BFGS-QNBP separately. SSNNM has three layers, input, hidden, and output layer, in the structure and network configuration consists of 8-8-2 nodes one by one. Nodes in input layer are composed of streamflow, precipitation, pan evaporation, and temperature with the monthly average values collected from Andong and Imha reservoir. But some temporal differences apparently exist in their time series. For the SSNNM training procedure, the training sets in input layer are generated by the PARMA(1,1) stochastic model and they covers insufficient time series. Generated data series are used to train SSNNM and the model parameters, optimal connection weights and biases, are estimated during training procedure. They are applied to evaluate model validation using observed data sets. In this study, the new approaches give outstanding results by the comparison of statistical analysis and hydrographs in the model validation. SSNNM will help to manage and control water distribution and give basic data to develop long-term coupled operation system in parallel reservoir groups of the Upper Nakdong River.

A Comparative Study of Monthly Inflow Prediction Methods by using Stochastic model and Artificial Neural Network model (추계학적 모형과 신경망 모형을 이용한 월유입량 예측기법 비교 연구)

  • Kang, Kwon Su;Heo, Jun Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1208-1212
    • /
    • 2004
  • 다목적댐을 효율적이고 체계적으로 운영하기 위해서는 수문순환에 대한 지역별, 기간별 이해와 더불어 댐저수지로의 정확한 유입량 산정이 필요하다. 수문모델링을 비교하기 위해서는 개념적 모형과 추계학적 모형으로 나눌 수 있는데 개념적 모형은 상당히 많은 입력요소로 말미암아 사용자로 하여금 이해를 하는데 있어서 어려움을 겪을 수 밖에 없는 실정이나 추계학적 모형은 확률적 철상 및 기초적 예측이론을 습득하게 되면 쉽고 간단하여 검토를 용이하게 할 수 있는 장점이 있다. 수자원시스템의 설계, 계획, 운영에 있어서 핵심적인 수문변수의 미래거동의 보다 나은 추정치가 필요하다. 예를 들어, 수력발전, 레크리에이션 이용과 하류지역의 오염희석과 같은 다중 목적을 유지하기 위하여 다목적댐을 운영할 때에, 다가오는 미래시간에 대한 계획된 유입량의 예측이 요구된다. 예측의 목적은 미래에 발생한 정확한 예측을 제공하는 것이다. 따라서 월유입량 예측을 위해 추계학적 모형(ARMA(1,1), ARMAX, TFN, SARIMA)과 신경망 모형(BP, CASCADE 등)의 적용을 통해 한강수게 주요 다목적댐에 가장 적합한 방법을 선정하고자 하는데 본 연구의 목적이 있다.

  • PDF

A Sampling Stochastic Linear Programming Model for Coordinated Multi-Reservoir Operation (저수지군 연계운영을 위한 표본 추계학적 선형 계획 모형)

  • Lee, Yong-Dae;Kim, Sheung-Kown;Kim, Jae-Hee
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.685-688
    • /
    • 2004
  • 본 연구에서는 저수지군 연계운영을 위한 표본 추계학적 선형 계획(SSLP, Sampling Stochastic Linear Programming) 모형을 제안한다. 일반적 추계학적 모형은 과거 자료로부터 확률변수의 확률분포를 추정하고 이를 몇 개 구간으로 나누어 이산 확률 값을 산정하여 기댓값이 최대가 되는 운영방안을 도출하지만 저수지 유입량 예측시 고려되어야할 지속성 효과(Persistemcy Effect)와 유역간 또는 시점별 공분산 효과(The joint spatial and temporal correlations)를 반영하는데 많은 한계가 있다. 이를 극복하기 위하여 과거자료 자체를 유입량 시나리오로 적용하여 시${\cdot}$공간적 상관관계를 유지하는 표본 추계학적(Sampling Stochastic)기법을 바탕으로 Simple Recourse Model로 구성한 추계학적 선형 계획 모형을 제시한다. 이 모형은 미국 기상청(NWS)에서 발생 가능한 유입량의 시나리오를 예측하는 방법인 앙상블 유량 예측(ESP, Ensemble Streamflow Prediction)을 통한 시나리오를 적용함으로써 좀더 신뢰성 있는 저수지군 연계운영 계획을 도출 할 수 있을 것으로 기대된다.

  • PDF

A Study on the Spatial Weather Generator (다지점 추계학적 기상모형의 적용)

  • Kim, Nam-Won;Lee, Jeong-Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1425-1428
    • /
    • 2010
  • 추계학적 기상모형(Stochastic weather generator)은 기상자료의 결측치 보완, 장기간의 기상 시계열 자료 생성, 지역적 기후변화 시나리오의 통계학적 다운스케일링에 적용되어 왔다. 이러한 추계학적 기상모형은 수자원, 농업, 환경, 생태 등의 분야에 적용되어, 수자원 설계, 점/비점오염 거동, 생태 및 수문학적 영향 평가의 중요한 도구로 이용되어 오고 있다. 또한, 최근 가장 큰 이슈가 되고 있는 기후변화의 영향을 평가하는데 필수불가결한 분야이다. 이 분야의 중요한 변화는 과거에는 지점별로 각각 기상자료를 생성하였으나, 최근에는 지점간의 상관성을 고려한 다지점 해석이 계속적으로 연구되어지고 있다. 본 연구에서는 유역규모에 적용하기 타당한 기상자료생성을 위하여 관측지점간의 상관성, 강수장(rainfall field)의 생성, 호우이동(storm movement)을 고려한 추계학적 기상모형을 제안하고, 충주댐 유역을 대상으로 그 적용성을 평가하였다.

  • PDF

Spatial Characteristics for Statistical Downscaling of Rainfall Data (강우의 통계학적 다운스케일링을 위한 공간특성 분석)

  • Lee, Jeong Eun;Lee, Jeongwoo;Kim, Chul Gyum;Kim, Nam Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.166-166
    • /
    • 2018
  • 수자원 분야의 기후변화 연구에서 유출분석을 위한 장기유출모형의 입력자료로 일단위의 기상자료가 요구된다. 이러한 일자료의 생성을 위해 통계학적 다운스케일링 기법 중 추계학적 기상모의모형이 가장 널리 적용되고 있다. 또한, 유역단위의 합리적 유출분석을 위해서는 기상모의모형을 이용한 일자료 발생시 기상관측지점 간의 공간상관성 확보가 선행되어야 한다. 이러한 문제점을 극복하기 위한 다지점 추계학적 기상모형의 개발 및 적용에 앞서 기존모형의 강우 발생과 크기와 관련된 주요요소들의 공간적인 특성을 분석하고자 하였다. 따라서, 본 연구에서는 국내 기상청 지점의 관측자료를 중심으로 모형의 강우발생과 관련된 강우/무강우 발생확률, 강우크기와 관련된 월강우량의 평균값, 월평균 강우량의 표준편차, 왜곡도를 산정하였다. 이를 중심으로 전국에 걸친 공간특성 분석을 통하여 다지점 추계학적 기상모의모형의 개발 및 적용시 고려해야 될 사항을 도출하고자 하였다.

  • PDF

Simulation of synthetic snow depth time-series using stochastic weather generation model (추계 일기 생성 모형을 활용한 합성 적설심 시계열 모의)

  • Park, Jeongha;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.99-99
    • /
    • 2021
  • 본 연구에서는 기상 자료와 적설 특성 자료의 관계를 도출하고, 이와 추계 일기 생성 모형을 활용하여 합성 적설심 시계열을 모의하는 방법에 대하여 제안한다. 추계 일기 생성 모형에서는 적설량을 직접 모의하지 않기 때문에 강수량을 적설량으로 변환해야한다. 이를 위해 도입한 관계식은 다음과 같다. 첫째로 기상청 적설 예보의 적설 유무 판단 기준을 이용하였다. 이 기준에서는 상대습도와 지상기온에 따라 강수의 형태를 비, 눈, 진눈깨비로 구분한다. 둘째로 강수가 적설로 판단되었을 때 강수량을 신적설심으로 환산하는 수상당량비를 지상기온과 회귀 분석하였다. 선행 연구에 따라 3시간 1 mm 이상 5 mm 이하 강수와 3시간 5 mm 이상 강수 사상에 대하여 나누어 sigmoid형 곡선을 이용하여 회귀 분석하였다. 마지막으로 융설에 의한 적설심 감소량을 지상기온과 복사량의 함수로 표현하였으며, 각 변수의 계수는 입자 군집 최적화 방법을 통하여 보정하였다. 추계 일기 생성 모형으로는 AWE-GEN 모형을 활용하였으며, 시험 자료로 강릉(105) 종관기상관측소의 24년 기간(1982-2005) 자료를 활용하여 합성 적설심 시계열을 생성하였다. 합성 적설심 시계열 모의 과정은 다음과 같다. (1) 추계 일기 생성 모형으로 합성 일기 자료 생성, (2) 강수 발생 시 적설 유무 판단, (3) 적설로 판단 시 수상당량비를 계산하여 신적설심 추정, (4) 기존 적설심에 신적설심을 더하고, 적설심 감소량만큼 감소. 위와 같은 과정으로 200년 길이 합성 적설심 시계열을 모의한 결과 극한 사상을 과소 추정하는 경향이 나타나 추가적인 개선이 필요한 것으로 판단된다.

  • PDF

Development of the Optimal Joint Operation System for Geumgang (추계학적 특성을 고려한 금강수계 최적 연계운영 시스템 개발)

  • Eum, Hyung-il;Lee, Eun Goo;Kim, Young-Oh;Ko, Ik hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.272-276
    • /
    • 2004
  • 이수기와 같이 장기적인 관점에서 저수지운영을 해야 하는 관리자는 해당 기간동안의 이익을 최대화하는 전략을 필요로 한다. 이를 위해서는 미래 유입량의 불확실성을 고려한 최적화 모형에 근거한 운영률을 수립해야 할 것이다. 본 연구에서는 금강수계의 이수기를 대상으로 추계학적 최적화 기법인 표본 추계학적 동적계획법(Sampling Stochastic Dynamic Programming)을 적용하여 최적 연계운영 시스템을 개발하였다. 본 연구를 통해 개발된 모형은 상용프로그램인 CSUDP와의 비교를 통해 검증되었으며 이를 기반으로 과거자료를 이용한 SSDP/Hist모형과 앙상블 유량예측(Ensemble Streamflow Prediction)을 이용한 SSDP/ESP모형을 개발하여 두 모형의 장${\cdot}$단점을 비교 분석하였다. 발전부분은 두 모형이 비슷하였으나 용수공급 측면에서는 SSDP/ESP가 SSDP/Hist 보다 우수함을 알 수 있었다.

  • PDF