• Title/Summary/Keyword: 추계학적모의

Search Result 123, Processing Time 0.033 seconds

Stochastic Generation Model Development for Optimum Reservoir Operation of Water Distribution System (저수지 최적운영모형을 위한 추계학적 모의 발생 모형의 유도)

  • Kim, Tae Geun;Yoon, Yong Nam;Kim, Joong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.887-896
    • /
    • 1994
  • It is common practice in the case of optimum reservoir operation model that the reservoir inflow series are generated by stochastic model with keeping other variable such as water demands from the reservoir constant. However, when the input and output of the water distribution system have close relationship the output variables can be stochastically generated in relation with the input variables. In the present study the reservoir inflow series, the input of the system, is generated by periodic autoregressive model with constant parameter, and the agricultural water demand series, the output, is generated using periodic multivariate autoregressive model with constant parameter. The time period of the data series generated is taken as 10-day which is the common period used for agricultural water uses. The results of data generation by two different models showed that the periodic stochastic models well represent the characteristics of the historical time series, and that in the case of generating model for agricultural demand series it has closer relation with reservoir inflow than with the series itself.

  • PDF

Application Examples of Daecheong Dam for Efficient Water Management Based on Integrated Water Management (통합물관리 기반 효율적 물관리를 위한 대청댐 실무적용 사례)

  • Kang, Kwon-Su;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.85-85
    • /
    • 2017
  • 효율적 물관리란 거대한 물순환 과정에서 인간이 편안한 삶을 사는데 필요한 물의 이용효율을 극대화하는 것이다. 과거의 물관리는 이원화된 수량과 수질관리, 수량중심에서는 용수공급과 홍수조절이 주요한 관심사였다. 현재는 과거의 물관리에 친수와 환경을 더한 복잡한 분야로 확대되고 있다. 통합물관리란 물을 최적으로 관리하기 위해 물관리 이해당사자간의 소통과 물 기술의 고도화를 기반으로 기존에 분산된 물관리 구성요소들(시설 정보, 수량 수질 등)을 권역적으로 관리하는 것을 말한다. 본 연구에서는 대청댐 방류에 따른 금강 하류부의 홍수추적을 위해 수행한 댐하류 소유역별 강우량 빈도분석 과정, 용담댐 방류를 고려한 대청댐 홍수도달시간 검토, Poincare Section과 신경망기법을 이용한 수문자료 예측, 추계학적 다변량 해석과 다변량 신경망해석에 의한 대청댐 유입량 산정과정, 보조여수로 건설에 따른 주여수로와 보조여수로간의 연계운영방안, 단계(관심, 주의, 경계, 심각)를 고려한 대청댐 확보수위 산정, 저수지 중장기 운영계획 수립과 댐 운영 기준수위를 결정하기 위해 누가차분방식으로 적용되는 갈수기 유입량 빈도분석에 대한 실무적용 사례를 소개하고자 한다. 강우량 빈도분석 과정은 L-모멘트방법(Hosking과 Wallis, 1993)을 적용하였고, 홍수도달시간 검토는 평균유속, 하류 수위상승 기점 영향검토, 수리학적 모형(FLDWAV, Progressive lag method 등)을 활용하였다. 카오스 이론을 도입하여 대청댐 수문자료의 상관성 검토 및 추계학적 모형을 이용한 모의발생을 유도하여 수문자료 예측을 시행하였다. 추계학적 모형과 신경망모형 연구의 대상은 대청댐으로, 시계열 자료는 댐의 월강우량, 월유입량, 최고기온, 평균기온, 최소기온, 습도, 증발량 등의 자료를 기반으로 하였다. 적용기간은 1981~2009년의 자료를 이용하여 2010년 1월부터 12월까지 12개월 동안의 월유입량을 예측하였다. 수문자료 해석의 기본이 되는 약 30년간의 자료를 이용하여 분석을 실시하였다. 대청댐의 유입량 예측을 위해 적용된 모형으로는 추계학적 모형인 ARMA모형, TF모형, TFN 모형 등이 적용되었고, 또한 신경망 모형의 종류인 다층 퍼셉트론, PCA모형 등을 활용하여 실측치와 가장 가깝게 근사화시키는 방법론을 찾고자 하였다. 또한, 기존여수로와 보조여수로 연계운영을 위해 3차원 수치해석을 통한 댐하류 안정성 검토 및 확보수위 산정을 통해 단계(관심, 주의, 경계, 심각)별로 대처가 가능한 수위를 산정하였다.

  • PDF

Development of a Stochastic Precipitation Generation Model for Generating Multi-site Daily Precipitation (다지점 일강수 모의를 위한 추계학적 강수모의모형의 구축)

  • Jeong, Dae-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.397-408
    • /
    • 2009
  • In this study, a stochastic precipitation generation framework for simultaneous simulation of daily precipitation at multiple sites is presented. The precipitation occurrence at individual sites is generated using hybrid-order Markov chain model which allows higher-order dependence for dry sequences. The precipitation amounts are reproduced using Anscombe residuals and gamma distributions. Multisite spatial correlations in the precipitation occurrence and amount series are represented with spatially correlated random numbers. The proposed model is applied for a network of 17 locations in the middle of Korean peninsular. Evaluation statistics are reported by generating 50 realizations of the precipitation of length equal to the observed record. The analysis of results show that the model reproduces wet day number, wet and dry day spell, and mean and standard deviation of wet day amount fairly well. However, mean values of 50 realizations of generated precipitation series yield around 23% Root Mean Square Errors (RMSE) of the average value of observed maximum numbers of consecutive wet and dry days and 17% RMSE of the average value of observed annual maximum precipitations for return periods of 100 and 200 years. The provided model also reproduces spatial correlations in observed precipitation occurrence and amount series accurately.

Comparison of Artificial Neural Networks and LARS-WG for Downscaling Climate Change Scenarios (기후변화 시나리오의 상세화를 위한 인공신경망과 LARS-WG의 모의 기법 평가)

  • Kim, Ji-Hye;Kang, Moon-Seong;Song, In-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.124-124
    • /
    • 2012
  • 기후변화가 수자원에 미치는 영향을 예측하는 데에 널리 사용되는 GCMs (General Circulation Models)는 모의 결과의 시 공간적 해상도가 낮기 때문에 상세화 (Downscaling) 기법을 거쳐 수문 모형에 적용된다. 상세화 기법은 크게 역학적 상세화 (Dynamical downscaling)와 통계적 상세화 (Statistical downscaling)로 구분되며, 종류가 매우 다양하고 각각의 모의 능력에 차이가 있으므로 적절한 기법을 선택할 필요가 있다. 본 연구의 목적은 통계적 상세화 기법 중 인공신경망과 LARS-WG 모형을 활용하여 CGCM3.1 T63의 모의 결과를 상세화하고, 두 모형의 모의 결과를 비교하는 데에 있다. 인공신경망은 비선형함수에 의한 전이함수 모형인 반면 LARS-WG는 추계학적 기상 발생기 모형으로, 각 모형을 이용해 CGCM3.1 T63의 강수량 및 평균기온 모의 결과를 서울 지역에 대해 공간적으로 상세화하였다. 모형의 검 보정은 1971년부터 2000년까지 30년 동안의 서울 관측소 일 기상 자료와 CGCM3.1 T63 (20C3M 시나리오) 모의 결과를 이용하여 수행하였다. 각 기법의 비교 및 평가는 2001년부터 2011년까지 11년 동안의 일 기상 자료와 CGCM3.1 T63 (IPCC SRES A1B 시나리오) 모의 결과를 이용하였다. 분석 결과, 인공신경망 모형은 입력 자료의 형태에 따라 모의 결과가 크게 달라지는 특성을 보였으며, LARS-WG 모형은 강수량을 실제보다 과소 추정하는 경향을 보였다. 본 연구에서는 강수량과 평균기온만을 대상으로 하였으나, 추후에 다른 기상인자를 고려함으로써 모형의 적용성을 보다 종합적으로 판단할 수 있을 것이다.

  • PDF

Uncertainty Analysis of Spatial Distribution of Probability Rainfall: Comparison of CEM and SGS Methods (확률강우량의 공간분포에 대한 불확실성 해석: CEM과 SGS 기법의 비교)

  • Seo, Young-Min;Yeo, Woon-Ki;Lee, Seung-Yoon;Jee, Hong-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.933-944
    • /
    • 2010
  • This study compares the CEM and SGS methods which are geostatistical stochastic simulation methods for assessing the uncertainty by spatial variability in the estimation of the spatial distribution of probability rainfall. In the stochastic simulations using CEM and SGS, two methods show almost similar results for the reproduction of spatial correlation structure, the statistics (standard deviation, coefficient of variation, interquartile range, and range) of realizations as uncertainty measures, and the uncertainty distribution of basin mean rainfall. However, the CEM is superior to SGS in aspect of simulation efficiency.

A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model (Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발)

  • Kim, Jang Gyeong;Kwon, Hyun Han;Kim, Dong Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.821-831
    • /
    • 2014
  • Stochastic rainfall generators or stochastic simulation have been widely employed to generate synthetic rainfall sequences which can be used in hydrologic models as inputs. The calibration of Poisson cluster stochastic rainfall generator (e.g. Modified Bartlett-Lewis Rectangular Pulse, MBLRP) is seriously affected by local minima that is usually estimated from the local optimization algorithm. In this regard, global optimization techniques such as particle swarm optimization and shuffled complex evolution algorithm have been proposed to better estimate the parameters. Although the global search algorithm is designed to avoid the local minima, reliable parameter estimation of MBLRP model is not always feasible especially in a limited parameter space. In addition, uncertainty associated with parameters in the MBLRP rainfall generator has not been properly addressed yet. In this sense, this study aims to develop and test a Bayesian model based parameter estimation method for the MBLRP rainfall generator that allow us to derive the posterior distribution of the model parameters. It was found that the HBM based MBLRP model showed better performance in terms of reproducing rainfall statistic and underlying distribution of hourly rainfall series.

A Study on the Development of the Stochastic Continuous Storage Function Model (추계학적 연속형 저류함수 모형 개발에 관한 연구)

  • Lee, Byong-Ju;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.231-235
    • /
    • 2009
  • 본 연구에서는 홍수예보를 위한 사상형 모형인 저류함수모형 적용시 문제점을 개선하기 위해 기존의 저류함수 모형에 자유수와 장력수의 2개 영역으로 구성된 토양수분모의 컴포넌트를 결합하여 지표유출, 중간유출, 기저유출의 유출수문성분에 대한 연속적인 모의가 가능하도록 하였으며 실시간 홍수예측을 위해 다수의 유량 관측지점과의 실시간 오차 보정이 가능하도록 앙상블 칼만 필터링 기법을 도입하였다. 개발된 모형의 적용성을 평가하기 위해 낙동강 권역을 대상유역으로 선정하였으며 시단위 강우자료, 기상자료, 유량자료를 비롯하여 GIS를 기반의 지형자료를 구축하였다. 연속형 저류함수형의 매개변수 추정결과 주요지점의 관측유량에 대해 높은 적합도를 보였으며 1시간 선행시간의 홍수량 예측결과에서도 높은 정확도를 보이는 것으로 나타났다.

  • PDF

A Development of Simultaneous Stochastic Simulation Model for Precipitation, Temperature, Humidity and Radiation (강수-온도-습도-일조량 연동 추계학적 모의기법 개발)

  • So, Byung-Jin;Kwon, Hyun-Han;Park, Sae-Hoon;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.386-386
    • /
    • 2011
  • 다양한 연구 분야에서 강수량, 온도, 습도, 일조량은 연구에 필요한 기후 인자로써 사용되어져 왔다. 외국의 경우 기후 인자들과의 관계를 도출해 내는 연구가 이루어 졌지만 국내의 경우는 이러한 연구가 이루어지지 않고 있다. 본 연구에서는 이러한 인자들과의 관계를 강수-온도-습도-일조량이 연동되어 모의되는 기법을 개발하고자 한다. 기존 국내외 연구결과들은 지수함수식의 형태를 가지는 모형을 이용하여 온도-일조량(radiation), 온도-습도, 습도-일조량, 온도와 강수-일조량과 습도를 개별적으로 추정하는 연구들이 있었다. 그러나 온도, 강수량, 습도, 일조량 등은 기상학적 관점에서 모두 연관성을 가지고 각 변량들에 영향을 주고 있다. 이러한 점에 착안하여 본 연구에서는 4가지 변량들이 가지는 관계를 규명하고 각 변량간의 상관관계뿐만 아니라 4가지 변량이 동시에 상관성을 갖도록 모형을 구축하고자 한다. 일반적으로 각 변량들 간의 확률적인 거동을 동시에 고려할 수 있는 Network 모형이 많이 이용된다. 본 연구에서는 Bayesian Network 모형을 활용하여 4가지 변량 간에 Bayesian Network를 구성하고, 통계적 모형으로 발전시켜 기후변화 연구에 활용하고자 한다. 제안된 방법론에 대한 적합성을 평가하기 위해, 서울지점을 대상으로 온도, 강수, 습도, 일조량 값을 이용하였다. 기후변화에 따른 수문순환모형에서 이들 4가지 변량은 기본 입력자료로 이용되고 있으나, 현재까지는 강수 및 온도를 사용한 모형 개발이 이루어지고 있다. 이러한 점에서 본 연구의 결과는 기후변화에 따른 물순환 변동성을 평가하는 기본 자료로서 활용될 수 있을 것으로 판단된다.

  • PDF

Analysis of Urban Drainage Network Characteristics Based on Gibbs' Model In Seoul (깁스모형을 이용한 서울시 배수관망 특성 분석)

  • Kim, Kyungjae;Seo, Yongwon;Hwang, Junshik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.54-54
    • /
    • 2017
  • 본 연구에서는 배수분구를 기준으로 서울특별시의 총 239개 지역 배수관망의 네트워크 특성을 깁스모형(Gibbs' model)을 이용하여 분석하였다. 깁스모형은 추계학적 하천망 모형으로 배수관망 네트워크의 특성을 검토하는데 사용된다. 또한 추계학적 모형이므로 같은 특성을 가지는 배수관망의 모의에도 이용된다. 분석결과 배수분구를 기준으로 서울시 총 239개 중 배수관망이 미 발단된 2개 지역을 제외한 237개를 값에 따라 총 8단계로 구분하여 분석하였다. ${\beta}$값이 $10^{-4}{\sim}10^{-1}$으로 비교적 비효율적인 배수관망은 전체 배수관망의 약 68%를 차지하는 것으로 나타났고, ${\beta}$값이 $10^0{\sim}10^3$으로 비교적 효율적인 배수관망은 전체 배수관망의 약 32%를 차지하는 것으로 나타났다. 따라서 서울시의 배수관망 특성은 비효율적인 관망이 지배적인 것으로 나타났다. 2010년과 2011년의 침수 흔적도와 ${\beta}$ 값의 상관분석을 수행한 결과 비효율적인 네트워크 특성을 가진 유역보다 상대적으로 효율적인 네트워크 특성을 가진 유역이 침수가 발생할 확률이 높다는 것을 밝혀냈다. 이러한 결과는 지속가능한 도시지역 배수관망 설계에 도움을 주고, 방재 관련 사업수립 및 침수원인 분석을 위한 연구에 기여할 것으로 판단된다.

  • PDF

A stochastic rainfall generation model that accurately reproduces the various statistical properties at the timescales from 5 minutes through decades, making it suitable for complex disaster simulations (5분에서 수십년 사이의 모든 타임스케일에서 강수의 다양한 통계적 특성을 정확히 재현하여 복합재난 모의에 적합한 추계학적 강수생성모형)

  • Dongkyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.117-117
    • /
    • 2023
  • 도시 홍수, 하천 범람, 산사태와 같은 폭우와 관련된 재해는 자주 동시에 발생하며, 각 재해는 서로 다른 범위의 시간 스케일에서 강우 변동성에 민감하게 반응한다. 따라서 재해 복합화 모델링에 적합한 확률 강우 모델은 모든 유형의 재해와 관련된 모든 시간 스케일에서 강우 변동성을 잘 재현할 수 있어야 한다. 본 연구에서는 5분에서 10년 사이의 시간 스케일에서 다양한 강우통계특성을 재현할 수 있는 추계학적 강우 생성기를 제안하였다. 이 모델은 우선 Randomized Bartlett-Lewis Rectangular Pulse (RBLRP) 모델을 사용하여 미세 규모의 강우량 시계열을 생성한 후, 연속된 폭풍 사이의 상관관계 구조가 유지되도록 폭풍우의 순서를 섞는다. 마지막으로, 별도의 월별 강우량 모델링 결과에 따라 월 단위로 시계열을 재배열한다. 독일 보훔에서 기록된 69년간의 5분 강우량 데이터를 사용하여 본 모형을 검증한 결과, 평균, 분산, 공분산, 왜곡도 및 강우 간헐성은 5분에서 10년에 이르는 시간 스케일에서 체계적인 편향 없이 잘 재현됨은 물론, 5분에서 3일 사이의 시간 스케일에서의 극한 강수량 값도 잘 재현음을 확인하였다. 아울러, 극한 강우 및 산사태에 큰 영향을 주는 극한 강우 발생 전 과거 7일간의 강수량도 정확히 재현되었다.

  • PDF