추계론적 해석은 구조계 내의 해석인수에 존재하는 공간적 또는 시간적 임의성이 구조계 반응에 미치는 영향에 대한 고찰을 목적으로 한다. 확률장은 구족계 내에서 특정한 확률분포를 가지는 것으로 가정된다. 구조계 반응에 대한 이들 확률장의 영향 평가를 위하여 통계학적 추계론적 해석과 비통계학적 추계론적 해석이 사용되고 있다. 본 연구에서는 비통계학적 추계론적 해석방법 중의 하나인 가중적분법을 제안하였다. 특히 구조계의 공간적 임의성이 큰 특성을 가지고 있는 반무한영역에 대한 적용 예를 제시하고자 한다. 반무한영역의 모델링에는 무한요소를 사용하였다. 제안된 방법에 의한 해석 결과는 통계학적 방법인 몬테카를로 방법에 의한 결과와 비교되었다. 제안된 가중적분법은 자기상관함수를 사용하여 확률장을 고려하므로 무한영역의 고려에 따른 해석의 모호성을 제거할 수 있다. 제안방법과 몬테카를로 방법에 의한 결과는 상호 잘 일치하였으며 공분산 및 표준편차는 무한요소의 적용에 의하여 매우 개선된 결과를 나타내었다.
단기 동 하중(특히 지진하중)을 받는 비선형 강 프레임 구조물의 안전성을 평가하기 위하여 추계론적 유한요소 개념에 근거한 비선형 시간영역 신뢰성 해석 기법을 제안하였다. 제안된 알고리즘에서는 유한요소 공식화가 응답 표면법, 1차 신뢰성 방법, 그리고 반복 선형보간 기법의 개념들과 결합되어 지는데, 이것이 추계론적 유한요소 개념으로 귀결된다. 실제 지진하중의 시간이력이 구조물의 진동을 위해 사용되므로 사실적인 하중조건의 재현이 가능하다. 가상 응력에 기초한 유한요소 기법이 본 알고리즘의 효율성을 증대하기 위해 사용된다. 본 알고리즘은 지진하중 또는 임의의 단기 동적하중을 받는 유한요소 기법으로 표현되는 어떠한 선형 및 비선형 구조물과 관련된 위험도를 평가할 수 있는 잠재성을 가지고 있다. 수치예제를 통하여 알고리즘을 설명하였으며, 몬테카를로 시뮬레이션 기법을 사용하여 본 알고리즘을 검증하였다.
본 연구에서는 급수전개를 이용한 추계론적 유한요소해석법의 개선을 위한 등가몬테카를로 추계장함수를 제안하고 1차 Taylor전개를 이용한 추계론적 유한요소해석법인 가중적분법에 적용하였다. 일반적으로 1차 Taylor전개를 이용하는 수치해석법에서의 응답변화도는 고려하고 있는 추계장의 분산계수에 대하여 선형거동을 보인다. 그러나 몬테카를로 해석의 경우 추계장 분산계수에 대하여 비선형 거동을 나타낸다. 이는 급수전개법의 1차 Taylor전개에 따른 선형특성에 기인한다. 따라서, 가중적분법에서 사용되는 Taylor전개된 변위벡터와 몬테카를로 해석에서의 변위벡터를 비교하고 이들 두 변위벡터 사이에 상호 불일치 하는 점을 고찰하여 몬테카를로 해석에서의 변위벡터와 등가의 변위벡터를 구성하고 이를 가중적분법에 적용하였다. 제안한 등가몬테카를로 추계장은 본래의 추계장 함수에 대한 고차함수로 주어진다. 평면구조에 대한 수치해석을 통하여 제안한 등가몬테카를로 추계장을 이용한 정식화의 타당성을 고찰하였다 새로운 정식화는 기존의 l차 가중적분법을 위한 정식화 과정과 유사하게 수행할 수 있었다.
본 논문은 추계론적 유한요소해석의 한 방법인 가중적분법의 확장에 대해서 논하였다. 가중적분법의 사용은 Deodatis에 의해서 삼각형요소로 확장되었다. 이에 의해서 2차원 문제에 대한 응답변화도를 수치적인 해석에 의해서 얻을 수 있게 되었다. 본 논문에서는 가중적분법을 일반 평면요소를 사용할 수 있도록 확장한다. 제안된 방법에 의해서 확정론적 유한요소해석에서 사용된 요소망은 추계론적 유한요소해석에서도 그대로 사용할 수 있도록 되었다. 나아가서, CST요소는 상수만을 그 요소로 가지는 변위-변형률 행렬을 가지는 특수한 경우이므로 제안된 방법을 사용할 경우 CST요소와 일반 평면 사변형 요소를 혼용하여 사용할 수 있을 것이다.
본 논문에서는 기초지반의 부등침하를 해석하기 위하여 추계론적 수치해석 방법을 사용하였다. 부등침하는 토질탄성계수의 공간적 변화와 밀접한 관계를 갖고 있다. Kriging 이론은 탄성계수의 공간적 변화를 설명하기 위하여 사용되었다. 이 방법은 선형최적불편추정기법으로 제한된 자료로 부터 최소의 분산을 가진 추정값을 구할 수 있다. 추계론적 유한요소법을 이용하여 일차근사 2차모멘트 기법으로 변위의 평균값과 분산값 그리고 공분산값을 구한다. 최종적으로 부등침하의 신뢰도모델이 제시되었다. 해석결과 두 기초사이의 거리와 탄성계수의 수평방향 변동거리가 거의 같을 때 최대부 등침하량이 일어난다는 것과 이 때 부등침하량이 허용간을 넋을 확률이 상당히 크다는 것이 밝혀 졌다.
본 논문에서는 구조의 재료물성치와 기하학적 인수의 공간적 불확실성에 의한 구조 응답변화도 산정을 위한 정식화를 제안하였다. 정식화는 추계론적 유한요소해석의 해석법 중의 하나인 가중적분법을 기본으로 하였다. 해석 대상 구조는 전단변형을 포함하는 평판구조로서, 평판구조에 나타날 수 있는 불확실 인수로는 재료적 측면에서는 재료탄성계수와 포아송비가 있으며, 기하학적 인수로는 평판의 두께를 들 수 있다. 선형탄성 영역에서 선형성을 나타내는 재료탄성계수와는 달리 평판의 두께는 3차함수로 강성에 기여하고, 포아송비의 경우 분수의 형태로 강성에 기여하므로 직접적으로는 이를 추계론적 해석에 고려할 수 없다. 따라서 본 연구에서는 적합행렬내의 포아송비를 Taylor전개하여 사용하였다. 제안된 정식화에 의한 결과는 기존 연구결과는 물론 몬테카를로 해석에 의한 결과와도 비교하여 제안한 정식화를 검증하였다.
본 연구에서는 역학적 특성이 우수하여 다양한 구조에 적용되고 있는 복합적층판에 대한 추계론적 유한요소해석 정식화를 제안한다. 정식화의 제시는 추계론적 수치해석기법 중 그 정확도가 매우 높은 것으로 알려져 있는 가중적분법에 기초하였다. 공간적 불확실성을 가지는 인수로는 두 재료축에 대한 탄성계수와 면내 전단탄성계수가 고려되었다. 이들 재료인수들은 독립적인 추계장함수로 모델링 되었으며, 이들 추계장이 구조거동에 미치는 영향은 지수함수형태의 자기 및 상호상관함수를 적용하여 산정하였다. 수치예제를 통하여 복합적층판이 등방성 및 이방성의 재료에 의한 판 구조에 비하여 거동의 변동계수가 낮음을 보여주었으며, 제안된 해석법의 검증을 위하여 몬테카를로 해석을 동시에 수행하고 그 결과를 상호 비교하였다.
본 연구는 가중적분법을 이용한 추계론적 유한요소해석에 관한 것으로 구조계 내에 존재하는 재료상수와 기하학적 상수의 임의성을 해석에 고려하여 추계론적 해석을 수행하였으며 대상 구조로는 평판구조를 택하였다. 재료와 기하학적 해석인자의 임의성을 포함한 요소강성행렬의 유도를 위해서 임의장을 가장하였으며 임의장의 평균은 0이고 표준편차 값은 0.1을 사용하였다. 이러한 임의장의 특성은 auto-correlation 함수에 의해서 표현되었으며 이 함수는 반응변화도를 얻는 과정에 사용되었다. 본 연구에서는 평판의 두께에 대한 임의성을 고려하기 위해서 새로운 auto-correlation 함수가 유도되었다. 유도된 새로운 auto-correlation 함수는 재료탄성계수의 임의장 특성을 나타내는 기존의 함수와 임의장 분산 계수의 함수로 나타났다. 수치해석결과는 몬테카를로 시뮬레이션 결과와 비교되었으며 상호 잘 일치하는 좋은 결과를 나타내었고 이들 결과는 제시된 이론적인 수렴치와도 잘 일치하였다. 평판두께에 대한 해석의 경우 역시 Lawrence의 결과는 물론 몬테카를로 시뮬레이션과 제시된 이론치와도 잘 일치하였다.
구조응답에 기여하는 중요성으로 인하여 추계론적 해석에서는 재료탄성계수의 불확실성에 의한 응답변화도에 대한 연구가 주로 진행되어 왔다. 그러나 추계론적 해석이 의미있는 값을 제공하기 위해서는 가능한 많은 인수에 대한 불확실성을 동시에 고려하여야 한다. 본 연구에서는 구조재료의 중요한 두 인수인 탄성계수와 포아송비에 나타나는 불확실성을 고려한 추계론적 해석을 위한 정식화를 평면문제에 대하여 제안하였다. 이를 위하여 이들 두 인수의 함수로 주어지는 구성행렬의 각 요소에 대한 다항식 전개를 채용하였으며, 두 인수의 불확실성에 따라 나타나는 자기 및 상호상관함수는 n-차 모멘트에 대한 일반식을 적용하여 구성하였다. 다항식 전개에 따라 부행렬의 무한합으로 변형된 구성행렬은 계산상의 편의를 위하여 요구되는 정확도 내에서 절삭하여 사용하였다. 제안된 방법의 검증을 위하여 단순 평면구조를 예제로 택하여 해석하었으며, 해석결과는 국부평균법을 채용한 고전적인 몬테카를 해석 결과와 비교하였다.
재료인수, 기하인수 또는 작용하중 등에 불확실성을 가지는 구조에 대한 추계론적 해석의 정확해는, 일반적인 관점에서, 불확실성을 표현하는 추계장의 수치생성과 이에 대한 몬테카를로 해석을 통하여 얻을 수 있다. 그러나 불확실 인수의 공간적 분포를 나타내는 추계장은 그 특성을 표현해주는 두 가지의 함수를 동시에 만족시켜야 한다. 하나는 확률변수의 공간적 분포 상황을 표현해주는 스펙트럼밀도함수이며, 다른 하나는 통계적 특성을 나타내는 확률밀도함수이다. 일반적으로 이들 두 함수를 동시에 만족시키는 추계장의 정확한 수치생성은 여러 이유에서 어려운 일로 여겨지고 있다. 그러나 상관관계거리가 무한대인 확률변수상태의 경우 추계장은 상수추계장이 되며, 이 경우 스펙트럼밀도함수에 의하여 부과되는 제한조건은 사라지게 되어, 단순히 확률밀도함수에 대한 조건만이 남게 된다. 이 경우, 구조인수의 불확실성에 의한 구조응답은 확률밀도함수만을 고려하여 얻을 수 있게 된다. 이렇게 산정되는 응답변화도는 기존의 급수전개 및 섭동법 등의 수치해법은 물론 몬테카를로 해석에서도 얻을 수 없었던 정확해에 대한 준이론해를 제공해 줄 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.