• Title/Summary/Keyword: 최후빙기

Search Result 7, Processing Time 0.022 seconds

Depositional Landforms in Jiwoo Drainage Basin (지우천 유역의 퇴적지형 연구)

  • Oh, In-Sun
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.2
    • /
    • pp.192-203
    • /
    • 2009
  • The purpose of this paper is to elucidate the formative processes of depositional landforms in Jiwoo drainage basin which located in the most upstream reach of Namgang River. Through the analysis of morphologic characteristics and sedimentary facies, the formative processes can be summarized as follow: First, the high depositional landforms(Sapyeong, Eungam, Naedongdyttle site) were formed by gelifluction process in the periglacial environment during the last glacial period. And the relative height over river bed of them is getting lower from upper to downstream. The extent of the high depositional landforms is assumed about 1 kilometer downstream far from the confluence of Jiwoo stream and Namgang River. Second, the sediments in the gentle slope at Jangseungbuldle were carried by gelifluction process during the last glacial stage after the deep-weathered bedrock had formed a gentle slope. Third, the high depositional landforms were dissected during warm and humid environment of postglacial stage, and some sediments of them were left in the river bed. Later, as the more upstream high depositional landforms were dissected completely, stream power was getting more than resistance(sediment storage) and the low depositional landforms(Sapyeong, Yongchusa, Deungbangdle site) were formed.

  • PDF

The Paleoenvironment(the LGM time) of the Western Coastal Area of the Korean Peninsula (eastern margin of the yellow sea)based on characteristic Cryoburtation Evidence from the kanweoldo Deposit Cheonsoo Bay West Coast of Korea. (천수만 간월도층의 퇴적후 변형상(cryoturbation)으로 해석되는 제4기 최후빙기의 한 반도 서해안의 고환경)

  • 박용안
    • The Korean Journal of Quaternary Research
    • /
    • v.9 no.1
    • /
    • pp.43-60
    • /
    • 1995
  • The Kanweoldo Deposit in the Cheonsoo Bay western coast of Korean Peninsula is considered to be influenced by severe freezing condition under cold humid environment of the last glacial age. The evidence of severe freezing in the some upper part of the fine-grained Kanweoldo Deposit is characteristically irregular wavy la-mellar structure with the interval of 2∼8mm. In particular lamina show very compacted fabrics composed of rounded or spheroidal discrete aggregates covered by silt caps. Such laminar structure and associated micro-fabrics might owe to soil freezing such as ice segregation in lens form cryophoresis pressure from growing ice and disturbance by frost-creep. Furthermore pedogenesis of cold-humid type such as gleyzation or peseudo-gleyzation also might af-fect the kanweoldo Deposit in the priod of severe cold-humid cli-mate of the Wrm. The Kanweoldo sediment and organic remnant(16,708 B.P. with error limit of 250 years) affected by severe cryogenic activities sug-gest that the paleoclimate of Late Wrm in Korea might be so cold and humid as to engender the cryogenic structure in subaerial silty and sandy silt deposits.

  • PDF

Species Identification of Charcoals Excavated at the Late Paleolithic Site of Suyanggae, Danyans (단양 수양개 후기구석기 유적 숯의 수종분석)

  • Park, Won-Kyu;Kim, Yo-Jung;Lee, Yung Jo
    • Journal of Conservation Science
    • /
    • v.12 no.1 s.15
    • /
    • pp.26-30
    • /
    • 2003
  • We examined the species of charcoals excavated at the late paleotithic site of Suyanggae. Suyanggae is located on the riverbed of Han river near Banyans, central Korea. The charcoals belong to the post-glacial period (radiocarbon dates: $18,630\~16,400\;BP$). Only two species were identified. Most of samples (139 among 142) examined were Pinus spp. (diploxylon). The other 3 samples were Picea spp. The results suggest the upper layer at $235\~245\;cm$ below the ground level was formed during dry and warm post glacial period, predominated by two needle pines and lower layer at 270 cm below the ground layer during the last glacial maximum period, predominated by spruces.

  • PDF

The Plant Species Composition and Phytogeographical Significance on Algific Talus Slope in Korea (한반도 풍혈지의 종조성과 식물지리학적 중요성)

  • Kim, Jin-Seok;Chung, Jae-Min;Lee, Byeng-Cheon;Pak, Jae-Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.36 no.1
    • /
    • pp.61-89
    • /
    • 2006
  • Algific talus slopes are local cold micro-environmental habitats where cool air escapes through vents and fissures of talus layer, and ice forms in summer. To access the phytogeographical significance and to develop the conservation strategy on vegetation of the algific talus, plant species composition on seven algific talus in South Korea was investigated. As a results, phytogeographically significant northern elements such as Cystopteris fragilis (L.) Bernh., Diplazium sibiricum (Turcz. ex Kunze) Sa.Kurata, Polypodium virginianum L., Vaccinium vitis-idaea L. and Hackelia deflexa (Wahlenb.) Opiz were distributed in these algific talus slopes (below $N37^{\circ}43^{\prime}$). In addition, subalpine species such as Woodsia subcordata Turcz, Rosa suavis willd., Clematis fusca var. coreana ($H.L{\acute{e}}v.$ & Vaniot) Nakai, Calamagrostis langsdorfii (Link) Trin. and Carex vaginata var. petersii (C.A.Mey.) Akiyama were also distributed as typical relictual species of these algific talus (less than alt. 400m). The algific talus slopes in Korean peninsular can be regarded as the insular refugia that northern plant species advanced southward during the latest glacial age have been isolated and adapted in some local microhabitats. Because the algific talus slopes as paleorefugia are very important in terms of phytogeography as well as meteorology ans geology, developments of strategies for in situ and ex situ conservation on these small isolated and threatened populations associated with the algific talus urgently needed.

Mineral Distribution of the Southeastern Yellow Sea and South Sea of Korea using Quantitative XRD Analysis (정량X선회절분석법을 이용한 황해 남동부, 한국남해 및 제주도 남단 표층퇴적물의 광물분포 연구)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Kyung-Hoon;Do, Jin-Young;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.49-61
    • /
    • 2009
  • We studied the mineral composition and mineral distribution pattern of 131 surface sediments collected at the cruise in 2000 and 2007 from Southeastern Yellow Sea, South Sea of Korea and Southern part of Jeju Island. Mineral compositions of surface sediments were determined using the quantitative X-ray diffraction analysis. Surface sediments were composed of rock forming minerals (quartz 37.4%, plagioclase 11.7%, alkali feldspar 5.5%, hornblende 3.1%), clay minerals (illite 19.2%, chlorite 4.7%, kaolinite 1.8%) and carbonate minerals (calcite 10.7%, aragonite 3.4%). Distribution of clay minerals is very similar with fine-grained sediments, and especially same as the distribution of HSMD (Hucksan Mudbelt Deposit), SSKMD (South Sea of Korea Mudbelt Deposit) and JJMD (Jeju Mudbelt Deposit). The coarse sediment seemed to be relic sediment during the last glacial maximum and mainly consisted of rock forming minerals. Whereas the fine sediments mainly composed of clay minerals. Based on the clay mineral composition, main ocean current and geographical factor, HSMD and SSKMD might have derived from the rivers around the Korean Peninsula. However, JJMD is complex mudbelt deposit, which formed by Korean rivers and oceanic sediments.

A Seismic Study on Muddy Sediment Deposits in the Northern Shelf of the East China Sea (동중국해 북부대륙붕에 발달한 니질 퇴적체의 탄성파 연구)

  • Choi Dong-Lim;Lee Tae-Hee;Yoo Hae-Soo;Lim Dhong-Il;Huh Sik;Kim Kwang-Hee
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.633-642
    • /
    • 2005
  • We present the sedimentary sequence and distribution pattern of the late Holocene muddy deposits in the northern East China Sea shelf using the high-resolution 'Chirp' profiles. The seismic sedimentary sequence overlying acoustic basement (basal reflector-B) can be divided into two depositional units (Unit 1 and 2) bounded by erosional bounding surface (mid reflector-M). The lower Unit 1 above basal reflector-H is characterized by the acoustically parallel to subparallel reflections and channel-fill facies. The upper Unit 2, up to 7 m in thickness, shows seismically semi-transparent seismic facies and lenticular body form. On the base of sequence stratigraphic concept, these two sediment units have developed during transgression and highstand period, respectively, since the last sea-level lowstand. The transgressive systems tract (Unit 1) lie directly on the sequence boundary (reflector B) that have farmed during the last glacial maximum. The transgressive systems tract in this study consists mostly of complex of delta, fluvial, and tidal deposits within the incised valley estuary system. The maximum flooding surface (reflector M) corresponding to the top surface of transgressive systems tract is obviously characterized by erosional depression. The highstand systems tract (Unit 2) above maximum flooding surface is made up of the mud patch filled with the erosional depression. The high-stand mud deposits showing a circle shape just like a typhoon symbol locates about 140 km off the south of Cheju Island with water depth of $60\~90m$. Coverage area and total sediment volume of the mud deposits are about $3,200km^2$ and $10.7\times10^9\;m^3$, respectively. The origin of the mud patch is interpreted as a result of accumulating suspended sediments derived from the paleo-Yellow and/or Yangtze Rivers. The circular distribution pattern of the mud patch appears to be largely controlled by the presence of cyclonic eddy in the northern East China Sea.

Provenance of the Sediments of the Araon Mound in the Chukchi Sea, Arctic Ocean (북극 척치해 아라온 마운드 퇴적물의 기원지에 관한 연구)

  • Jang, JeongKyu;Koo, HyoJin;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.15-29
    • /
    • 2021
  • In the Arctic Ocean, the distribution of sea ice and ice sheets changes as climate changes. Because the distribution of ice cover influences the mineral composition of marine sediments, studying marine sediments transported by sea ice or iceberg is very important to understand the global climate change. This study analyzes marine sediment samples collected from the Arctic Ocean and infers the provenance of the sediments to reconstruct the paleoenvironment changes of the western Arctic. The analyzed samples include four gravity cores collected from the Araon mound in the Chukchi Plateau and one gravity core collected from the slope between the Araon mounds. The core sediments were brown, gray, and greenish gray, each of which corresponds to the characteristic color of sediments deposited during the interglacial/glacial cycle in the western Arctic Ocean. We divide the core sediments into three units based on the analysis of bulk mineral composition, clay mineral composition, and Ice Rafted Debris (IRD) as well as comparison with previous study results. Unit 3 sediments, deposited during the last glacial maximum, were transported by sea ice and currents after the sediments of the Kolyma and Indigirka Rivers were deposited on the continental shelf of the East Siberian Sea. Unit 2 sediments, deposited during the deglacial period, were from the Kolyma and Indigirka Rivers flowing into the East Siberian Sea as well as from the Mackenzie River and the Canadian Archipelago flowing into the Beaufort Sea. Unit 2 sediments also contained an extensive amount of IRD, which originated from the melted Laurentide Ice Sheet. During the interglacial stage, fine-grained sediments of Unit 1 were transported by sea ice and currents from Northern Canada and the East Siberian Sea, but coarse-grained sediments were derived by sea ice from the Canadian Archipelago.