• 제목/요약/키워드: 최적 학습 모델 구성

검색결과 98건 처리시간 0.036초

Harmony Search 알고리즘 기반 HMM 구조 최적화에 의한 얼굴 정서 인식 시스템 개발 (Development of Facial Emotion Recognition System Based on Optimization of HMM Structure by using Harmony Search Algorithm)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.395-400
    • /
    • 2011
  • 본 논문에서는 얼굴 표정에서 나타나는 동적인 정서상태 변화를 고려한 얼굴 영상 기반 정서 인식 연구를 제안한다. 본 연구는 얼굴 영상 기반 정서적 특징 검출 및 분석 단계와 정서 상태 분류/인식 단계로 구분할 수 있다. 세부 연구의 구성 중 첫 번째는 Facial Action Units (FAUs)과 결합한 Active Shape Model (ASM)을 이용하여 정서 특징 영역 검출 및 분석기법의 제안이며, 두 번째는 시간에 따른 정서 상태의 동적 변화를 고려한 정확한 인식을 위하여 Hidden Markov Model(HMM) 형태의 Dynamic Bayesian Network를 사용한 정서 상태 분류 및 인식기법의 제안이다. 또한, 최적의 정서적 상태 분류를 위한 HMM의 파라미터 학습 시 Harmony Search (HS) 알고리즘을 이용한 휴리스틱 최적화 과정을 적용하였으며, 이를 통하여 동적 얼굴 영상 변화를 기반으로 하는 정서 상태 인식 시스템을 구성하고 그 성능의 향상을 도모하였다.

한국어 TTS 시스템에서 딥러닝 기반 최첨단 보코더 기술 성능 비교 (Performance Comparison of State-of-the-Art Vocoder Technology Based on Deep Learning in a Korean TTS System)

  • 권철홍
    • 문화기술의 융합
    • /
    • 제6권2호
    • /
    • pp.509-514
    • /
    • 2020
  • 기존의 TTS 시스템은 텍스트 전처리, 구문 분석, 발음표기 변환, 경계 분석, 운율 조절, 음향 모델에 의한 음향 특징 생성, 합성음 생성 등 여러 모듈로 구성되어 있다. 그러나 딥러닝 기반 TTS 시스템은 텍스트에서 스펙트로그램을 생성하는 Text2Mel 과정과 스펙트로그램에서 음성신호을 합성하는 보코더로 구성된다. 본 논문에서는 최적의 한국어 TTS 시스템 구성을 위해 Tex2Mel 과정에는 Tacotron2를 적용하고, 보코더로는 WaveNet, WaveRNN, WaveGlow를 소개하고 이를 구현하여 성능을 비교 검증한다. 실험 결과, WaveNet은 MOS가 가장 높으며 학습 모델 크기가 수백 MB이고 합성시간이 실시간의 50배 정도라는 결과가 나왔다. WaveRNN은 WaveNet과 유사한 MOS 성능을 보여주며 모델 크기가 수십 MB 단위이고 실시간 처리는 어렵다는 결과가 도출됐다. WaveGlow는 실시간 처리가 가능한 방법이며 모델 크기가 수 GB이고 MOS가 세 방식 중에서 가장 떨어진다는 결과를 보여주었다. 본 논문에서는 이러한 연구 결과로부터 TTS 시스템을 적용하는 분야의 하드웨어 환경에 맞춰 적합한 방식을 선정할 수 있는 참고 기준을 제시한다.

미디어 스트리밍 시스템에서의 상태 천이 모델을 활용한 고속 분산 네트워크 파일 시스템 (Fast Distributed Network File System using State Transition Model in the Media Streaming System)

  • 우순;이준표
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.145-152
    • /
    • 2012
  • 네트워크를 통해 전송되는 스트리밍 미디어의 대용량화로 인해 기존의 전송 방법은 최적의 성능을 제시하지 못하고 있다. 이를 위해 대역폭의 소비와 네트워크 혼잡 및 트래픽을 감소시키는 비디오 프록시 서버가 운용된다. 본 논문은 비디오 프록시 서버의 효율적인 활용을 위해 미디어 스트리밍 시스템에서의 상태 천이 모델을 활용한 고속 분산 네트워크 파일 시스템을 제안한다. 제안하는 방법은 상태 천이 모델을 활용한 학습 과정, 기본 확률과 결정 확률의 생성, 그리고 확률을 기반으로 한 저장과 삭제의 3단계로 구성된다. 또한 비디오 프록시 서버의 저장 공간에서 발생되는 단편화를 막기 위하여 해당 공간을 세그먼트 별로 영역을 구분한다. 실험을 통해 제안하는 방법이 기존의 방법들에 비해 보다 높은 적중률을 보이는 동시에 보다 적은 삭제 횟수를 보임을 확인한다. 이를 통해 제안하는 방법이 초기 지연시간을 최소화하는 동시에 네트워크 대역폭을 효율적으로 활용하는 것을 보인다.

User Customization이 가능한 Handheld device의 Modular interface 설계 (Modular UI research as a user customization method on handheld devices)

  • 송상곤;박보은;장현국;김영선;김나영;박현철
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 2부
    • /
    • pp.153-158
    • /
    • 2007
  • 기존의 모바일 기기들은 일반화된 고정 인터페이스 상태의 제품으로, 사용자가 단순 학습을 통해 반복된 인터렉션과 구성만을 이용하는 수준이었으나 최근과 같이 기기가 지능적이고 다양화되면서 개인의 요구와 특성을 반영한 인터페이스 방법들을 요구하기 시작하였다. 이에 따라 일반적 성향에 맞추어진 Universal UI와 개인의 특성에 맞춰진 Customizing UI의 양립적 이슈는 지속적으로 대치되어 왔다. 그러므로 이를 서로 적절한 수준에서 상호 보완하여 디자인하는 것은 그 형태나 속성을 떠나 최신 UI의 기본적인 필요충분조건이 되었다. Universal UI는 인식과 행동패턴을 달리하는 사람들의 공통분모를 찾아냄으로써 표준화의 Solution을 찾아낼 수 있었지만 Customizing에 대한 해답은 사용자 심리, 문화, 역사까지 고려해야 한다. 우리는 이 두 부분을 모두 만족하는 다방면의 멘탈모델 수립과 UT검증을 통해 모바일 기기에서 최적의 인터페이스 개발을 진행하게 되었다. 이러한 Customizing에 대한 연구는 기기 사용자의 지역과, 문화적 특성에 따라 최적화된 인터페이스를 제공할 수 있기에 기기 제조사는 Future work을 위해서라도 이러한 부분에의 충분한 연구 의의가 있다고 할 수 있다. 우리는 본 논문에서와 같은 Personalization과, 선호 기능을 좀 더 쉽게 적응하고 사용할 수 있도록 하는 Customization 을 통해 사용자의 성향을 적극 반영할 수 있는 모바일 인터페이스 제품 개발로 한 단계 발전시켰다고 본다.

  • PDF

DFP Method 기반의 새로운 적응형 디지털 전치 왜곡 선형화기 알고리즘 개발 (A Design of New Digital Adaptive Predistortion Linearizer Algorithm Based on DFP(Davidon-Fletcher-Powell) Method)

  • 장정석;최용규;서경환;홍의석
    • 한국전자파학회논문지
    • /
    • 제22권3호
    • /
    • pp.312-319
    • /
    • 2011
  • 본 논문에서는 디지털 전치 왜곡 선형화기를 위한 새로운 선형화 알고리즘을 제안하였다. 제안된 알고리즘은 DFP(Davidon-Fletcher-Powell) method를 활용하였다. 또한, 기존의 알고리즘보다 빠른 수렴 속도를 가지며, 가중치 갱신 step-size를 초기 설정값 없이 매 루틴마다 최적의 값을 갱신한다. 전력증폭기 모델링에는 전력 증폭기의 기억 효과를 모델링할 수 있는 memory polynomial 모델을 사용하였고, 선형화기의 전체적인 구성은 간접 학습 구조를 따랐다. 제안된 알고리즘의 성능 검증을 위해 기존의 LMS(Least Mean-Squares), RLS(Recursive Least squares) 알고리즘과 비교하였다.

LVQ를 이용한 무선 센서 네트워크의 실내 위치 인식 (Indoor Localization in Wireless Sensor Network using LVQ)

  • 박진우;정경권;엄기환
    • 한국정보통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.1295-1302
    • /
    • 2010
  • 본 논문에서는 LVQ(Learning Vector Quantization) 네트워크를 이용한 수신 신호 세기(Received Signal Strength Indication) 기반 실내 위치인식 시스템을 제안하였다. 제안한 방식의 유용성을 확인하기 위하여 실험을 수행하였고, 일반적인 삼각측량 방법과 비교하였다. 실험실을 40개의 영역으로 나누고 6개의 고정 노드를 설치하였다. 무선 채널의 대수-정규 경로 손실 모델을 구성하고, 수신 신호 강도를 거리로 변환하였다. 변환한 정보를 LVQ의 입력으로 사용하였다. LVQ 네트워크의 학습을 위해 영역의 인덱스를 목표값으로 설정하였다. 실험을 통해서 최적의 서브클래스 개수를 결정하였고, LVQ 네트워크의 훈련을 통해서는 96%, 테스트를 통해서는 91%의 성능을 확인하였다.

다수의 고유 공간을 이용한 주화 표면 품질 진단 (Inspection of Coin Surface Defects using Multiple Eigen Spaces)

  • 김재민;류호진
    • 한국콘텐츠학회논문지
    • /
    • 제11권3호
    • /
    • pp.18-25
    • /
    • 2011
  • 현재 주화의 제조 공정에서는 주화의 표면 품질 진단을 사람이 눈으로 직접 확인하여 수행하고 있다. 본 논문은 컨베이어 벨트에 놓이어 이동하는 주화로부터 획득한 영상을 이용하여 주화 표면의 결함을 검출하는 영상처리 방법을 제시한다. 결함 검출 방법은 영상에서 주화 영역을 분할하고, 분할된 동전을 비교할 모델에 정렬하며, 정렬된 영상을 최적의 고유 영상 공간으로 투영, 투영 오차와 학습된 가변 임계값과 비교하여 결함 부위를 검출한다. 본 논문에서는 이러한 일련의 영상처리 과정 중에서 주화 표면 진단과 관련하여 특화된 새로운 방법을 제시한다. 주화의 정렬을 위하여 분할된 주화의 히스토그램을 사용한다. 이 방법은 2차원 영상의 정렬을 일차원 히스토그램의 정렬로 변환하는 것이다. 다음으로 정렬된 영상을 고유 영상공간에 투영시켜 주화 방향에 따른 휘도 변화를 보정한다. 이 방법은 소수의 고유 영상 벡터들로 구성된 고유 영상 공간을 여러 개 생성하고, 최적의 고유 영상 공간에 정렬된 영상을 투영하여 실시간 구현이 가능하게 한다.

낙동강 유역에서의 유량 예측 신경망 모형에 관한 연구 (A Neural Networks Model for Flow Forecasting in Nakdong River Basin)

  • 한건연;김동일;최현구;윤영삼
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1727-1731
    • /
    • 2008
  • 수자원의 효율적인 관리를 위해서는 신뢰성 있는 유량자료의 획득이 대단히 중요하다. 우리나라는 양질의 유량자료를 획득하기 위해 매년 많은 시간과 돈을 투자하고 있으나 자료의 질적인 면에서 만족할 만한 성과를 얻지 못하고 있다. 현재까지 우리나라의 유량자료는 댐의 수문자료와 수량관리 부처인 건교부에서 운영하는 수위표 지점의 수위-유량곡선에서 산출된 자료에 의존하고 있다. 그러나 수위-유량 관계식을 보정하기 위한 유량측정사업이 지속적이지 못하며, 이 관계식은 유량이 적은 저수기 및 갈수기에는 부정확하다는 한계가 있다. 또한, 국립환경과학원 낙동강물환경연구소에서 오염총량관리를 위한 낙동강수계 유량측정사업을 실시하고 있지만, 목적은 낙동강수계의 오염총량관리 단위유역 말단 47개 지점에서 유량측정을 효율적으로 실시하여 수질정책의 기초자료를 제공하는데 있다. 이 자료 역시 오염총량관리를 위하여 유량측정을 실시하여 수자원의 효율적인 관리를 위한 일 유량을 알 수가 없는 한계점을 가지고 있다. 따라서 저수기 및 갈수기에 수질정책의 기초자료를 제공하기 위해서 하천을 포함한 유역의 정확한 강우-유출특성의 파악이 필요하다. 그러나 강우-유출특성 또한 유역 내 강우의 시 공간적 분포가 다르며 그 자가 비선형성이 강하고 여러 변동성을 포함하므로, 강우로부터 하천의 유출량의 정확한 해석이 불가능하다. 그러나 최근 인공지능 분야에서 신호처리, 지능제어 및 패턴인식 등의 수단으로 사용되고 있는 신경망은 학습이라는 최적화 과정을 통해 입력과 출력으로 구성되는 하나의 시스템을 비선형적으로 구축할 수 있으며 이러한 이점을 활용하여 수자원 분야에서 다양하게 적용되고 있다. 본 연구의 목적은 강우-유출자료 및 댐 방류량 자료의 비선형적인 특정을 가장 잘 반영할 수 있는 신경망모형을 적용하여 수질정책의 기초자료를 제공하기 위하여 신뢰성 있는 유량자료를 산정하는 모형을 개발하는 것이다. 이를 위해서 낙동강물환경연구소에서 오염총량관리를 위한 낙동강수계 유량측정 지점 상류의 댐 방류량의 일 방류량자료와 강우자료를 입력 자료로 하여 유량을 예측할 수 있는 유량예측 신경망 모형 FFBN(Flow Forecasting By Neural)을 개발하였다. 그리고 입력 자료로서 장기유출모형인 SWAT의 모의결과를 입력 자료로 추가한 FFBNS(Flow Forecasting By Neural and SWAT)을 개발하였다. 신경망 모형의 구조는 입력층과 출력층 사이에 하나의 은닉층이 존재하는 다층 신경망으로 구성하였으며, 학습단계에서는 오류 역전파 알고리듬 학습방법 중 모멘텀법을 사용하였다. 예측된 유출량을 실측치와의 비교를 위하여 낙본D지점과 낙본 E지점에 대하여 $2005{\sim}2006$년까지의 모의 결과를 낙동 수위측정지점과 구미 수위측정지점의 실측치 통하여 복잡한 비선형성을 가지는 유출 시계열 자료에 대한 효과적인 최적의 신경망모델을 개발하여 유량을 예측하고 적용 가능성을 검토하고자 한다. 모의 결과는 수질정책의 기초자료 제공에 기여할 수 있을 것으로 판단된다.

  • PDF

터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구 (A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels)

  • 이규범;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제26권2호
    • /
    • pp.129-152
    • /
    • 2024
  • 터널 내 CCTV를 통한 딥러닝 객체인식 적용에 있어서 터널의 열악한 환경조건, 즉 낮은 조도 및 심한 원근현상으로 인해 오탐지가 대량 발생한다. 이 문제는 객체인식 성능에 기반한 영상유고시스템의 신뢰성 문제로 직결되므로 정탐지 향상과 더불어 오탐지의 저감 방안이 더욱 필요한 상황이다. 이에 본 논문은 딥러닝 객체인식 모델을 기반으로, 오탐지 데이터의 재학습을 통해 오탐지의 저감뿐만 아니라 정탐지 성능 향상도 함께 추구하는 오탐지 학습법을 제안한다. 본 논문의 오탐지 학습법은 객체인식 단계를 기반으로 진행되며, 학습용 데이터셋 초기학습 - 검증용 데이터셋 추론 - 오탐지 데이터 정정 및 데이터셋 구성 - 학습용 데이터셋에 추가 후 재학습으로 이어진다. 본 논문은 이에 대한 성능을 검증하기 위해 실험을 진행하였으며, 우선 선행 실험을 통해 본 실험에 적용할 딥러닝 객체인식 모델의 최적 하이퍼파라미터를 결정하였다. 그리고 본 실험에서는 학습영상 포맷을 결정하기 위한 실험, 반복적인 오탐지 데이터셋의 재학습을 통해 장기적인 성능향상을 확인하기 위한 실험을 순차적으로 진행하였다. 그 결과, 첫 번째 본 실험에서는 추론된 영상 내에서 객체를 제외한 배경을 제거시키는 경우보다 배경을 포함시키는 경우가 객체인식 성능에 유리한 것으로 나타났으며, 두 번째 본 실험에서는 재학습 차수별 독립적으로 오탐지 데이터를 재학습시키는 경우보다 차수마다 발생하는 오탐지 데이터를 누적시켜 재학습 시키는 경우가 지속적인 객체인식 성능 향상 측면에서 유리한 것으로 나타났다. 두 실험을 통해 결정된 방법으로 오탐지 데이터 재학습을 진행한 결과, 차량 객체 클래스는 1차 재학습 이후부터 AP값이 0.95 이상 우수한 추론 성능이 발현되었으며, 5차 재학습까지 초기 추론 대비 약 1.06배 추론성능이 향상되었다. 보행자 객체 클래스는 재학습이 진행됨에 따라 지속적으로 추론 성능이 향상되었으며, 18차 재학습까지 초기 추론대비 2.3배 이상 추론성능이 자가 향상될 수 있음을 보였다.

기계학습 방법을 이용한 레이더 신호 분류 (Classification of Radar Signals Using Machine Learning Techniques)

  • 홍석준;이연규;최종원;조제일;서보석
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.162-167
    • /
    • 2018
  • 이 논문에서는 수신된 레이더 신호로부터 추출한 파라미터 데이터에 기계학습을 적용하여 그 레이더에 대응하기 위한 재밍기법에 따라 레이더 신호를 분류하는 방법을 제안한다. 현재 군에서는 대부분 사전 조사에 의해 구축된 레이더 신호 파라미터에 대한 라이브러리를 기반으로 위협 형태에 따라 레이더 신호를 분류한다. 그러나 레이더 기술은 계속적으로 발전되고 다양해지고 있기 때문에 새로운 위협이나 기존의 라이브러리에 존재하지 않는 위협형태에 대해서 이 방법을 적용하는 경우 적절하게 신호를 분류할 수 없고 따라서 적합한 재밍기법을 선택하는데 제한이 따른다. 따라서 기존의 위협 라이브러리를 이용한 방식과 다르게 추정한 레이더 신호의 파라미터 데이터만을 이용하여 최적의 재밍기법을 선택할 수 있도록 신호를 분류하는 기술이 필요하다. 이 연구에서는 새로운 위협 신호의 형태에 대응하기 위한 방법으로 기계학습을 기반으로 한 방법을 제시한다. 제안한 방법은 기존에 축적된 라이브러리 데이터를 이용하여 은닉 마르코프(Markov) 모델과 신경망으로 구성된 분류기를 학습시킴으로써 새로운 위협 신호에 대해 적절한 재밍기법을 대응시킬 수 있도록 신호를 분류한다.