• Title/Summary/Keyword: 최적 터널설계

Search Result 154, Processing Time 0.024 seconds

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel (터널을 주행하는 열차의 풍압에 대한 특성해법 해석)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Yun, Su-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.436-441
    • /
    • 2012
  • Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.

A Study on the Automation Algorithm to Identify the Geological Lineament using Spatial Statistical Analysis (공간통계분석을 이용한 지질구조선 자동화 알고리즘 연구)

  • Kwon, O-Il;Kim, Woo-Seok;Kim, Jin-Hwan;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.367-376
    • /
    • 2017
  • Recently, tunneling under the seabed is becoming increasingly common in many countries. In Korea, there are proposals to tunnel from the mainland to Jeju Island. Safe construction requires geologic structures such as faults to be characterized during the design and construction phase; however, unlike on land, such structures are difficult to survey seabed. This study aims to develop an algorithm that uses geostatistics to automatically derive large-scale geological structures on the seabed. The most important considerations in this method are the optimal size of the moving window, the optimal type of spatial statistics, and determination of the optimal percentile standard. Finally, the optimal analysis algorithm was developed using the R program, which comprehensibly presents variations in spatial statistics. The program allows the type and percentile standard of spatial statistics to be specified by the user, thus enabling an analysis of the geological structure according to variations in spatial statistics. The geotechnical defense-training algorithm shows that a large, linear geological lineament is best visualized using a $3{\times}3$ moving window and a 10% upper standard based on the moving variance value and fractile. In particular, setting the fractile criterion to the upper 0.5% almost entirely eliminates the error values from the contour image.

A study on the optimization of tunnel support patterns using ANN and SVR algorithms (ANN 및 SVR 알고리즘을 활용한 최적 터널지보패턴 선정에 관한 연구)

  • Lee, Je-Kyum;Kim, YangKyun;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.617-628
    • /
    • 2022
  • A ground support pattern should be designed by properly integrating various support materials in accordance with the rock mass grade when constructing a tunnel, and a technical decision must be made in this process by professionals with vast construction experiences. However, designing supports at the early stage of tunnel design, such as feasibility study or basic design, may be very challenging due to the short timeline, insufficient budget, and deficiency of field data. Meanwhile, the design of the support pattern can be performed more quickly and reliably by utilizing the machine learning technique and the accumulated design data with the rapid increase in tunnel construction in South Korea. Therefore, in this study, the design data and ground exploration data of 48 road tunnels in South Korea were inspected, and data about 19 items, including eight input items (rock type, resistivity, depth, tunnel length, safety index by tunnel length, safety index by rick index, tunnel type, tunnel area) and 11 output items (rock mass grade, two items for shotcrete, three items for rock bolt, three items for steel support, two items for concrete lining), were collected to automatically determine the rock mass class and the support pattern. Three machine learning models (S1, A1, A2) were developed using two machine learning algorithms (SVR, ANN) and organized data. As a result, the A2 model, which applied different loss functions according to the output data format, showed the best performance. This study confirms the potential of support pattern design using machine learning, and it is expected that it will be able to improve the design model by continuously using the model in the actual design, compensating for its shortcomings, and improving its usability.

Comparative Study on Determining Highway Routes (도로의 최적노선대 선정방법 비교 연구)

  • Kim, Kwan-Jung;Chang, Myung-Soon
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.159-179
    • /
    • 2006
  • By using the current road design method that is based on the regulation about structure and facilities standard of the road and the route plan guide of a national road and the alignment optimization road design method which is studied in the inside and outside of country, this study operate the route plan of the sample study and compare and analysis the route character, consequently the current design method has local optimization that is formed the plan by the stage and the section. Alignment optimization road design has the system optimal route search. But cost function has limite that caused by construction parameter that is not included in cost function. So we design a road route included cost function in main fields. As a result, we obtain a realistic and economically road route. The alignment optimization road design model has to be made up some problems, like the change of vertical gradient in the tunnel section, though this defects it has a lot of merits as a geometric design tool, especially in the feasibility study and the scheme design.

  • PDF

A study on the characteristics of Micro Pressure wave for the optimum cross-section design in Honam high speed railway (호남고속철도 터널 단면선정을 위한 미기압파 특성 분석에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.51-68
    • /
    • 2008
  • When the train enters into a tunnel a high speed, pressure waves are generated inside the tunnel. The pressure waves at propagate in a form of compression wave toward the tunnel exit and a fraction of the compression waves that arrives at the exit of the tunnel are discharged to outside of the tunnel and the remainder is reflected into the tunnel as expansion waves. The compression waves emitted from the tunnel does not radiate in a specific direction but in all directions. If the amplitude of the compression wave is great, it causes noise and vibration, and it is called "Micro-Pressure Wave." "Micro-Pressure Wave" must be considered as a decision for the optimum tunnel cross-section as the amplitude of the compression wave depends on train speed, tunnel length, area of tunnel and train. Therefore, this paper introduces the case study of Micro-Pressure Wave characteristics for determination of tunnel cross section in Honam high speed railway, the pressure inside the tunnel and the micro-pressure waves at tunnel exit were measured at Hwashin 5 tunnel in Kyungbu HSR line. At the same time. a test of train operation model was performed and then the measurement results and test results were compared to verify that the various parameters used as input conditions for the numerical simulations, which were appropriate. Also a model test was performed, in order to analysis of the Micro-Pressure Wave Mitigation Performance by Type of Hood at Entrance Portal.

  • PDF

Blasting Design for Large Shaft in Urban Area Considering Noise and Vibration -Singapore Transmission Cable Tunnel EW2- (소음 및 진동을 고려한 도심지 내 대단면 수직구 발파설계 사례 -싱가포르 Transmission Cable Tunnel EW2 공구-)

  • Kim, Julie;Lee, Hyo;Kim, Dave;Ko, Tae-Young;Lee, Simon
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • With increasing needs in power, Singapore is requiring stronger power transmission. Singapore Transmission Cable Tunnel is underground tunnel for transmission system installation such as 400 kV cable. This Transmission Cable Tunnel is 35 km long in total. The North-South Transmission Cable Tunnel is 18.5 km long and there is a total of three (3) contracts; NS1, NS2 and NS3 in respect of the design and construction. The East-West Transmission Cable Tunnel is 16.5 km long, and also there is a total of three (3) contracts; EW1, EW2 and EW3. Among of them, SK E&C has been awarded and operating contract EW2 and NS2. In scope of works, each contract has 3 to 4 shafts which connect aboveground and underground high volt cable and those shafts are used as TBM launching shafts during construction. Transmission Cable Tunnel is undercrossing middle of Singapore and most of shafts are located in urban area. Thus, optimal blasting design satisfying high blasting efficiency as well as blasting vibration limit of Singapore is highly required. Blasting design for large shaft of Singapore Transmission Cable Tunnel follows blasting vibration limits in Singapore and reflects our blasting engineering skills. With Singapore Transmission Cable Tunnel Contract EW2, it is expected that our excellent blasting engineering and performance skills can be delivered to the world.

Numerical Simulation of Groundwater Discharge Into a Tunnel (터널 지하수 유출량 산정을 위한 수치모델)

  • Jeong, Jae-Hyeon;Koo, Min-Ho
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.369-376
    • /
    • 2015
  • Numerical models simulating groundwater flow are often used to estimate groundwater discharge into a tunnel. In designing numerical models, the grid size should be carefully considered to ensure that groundwater discharge is accurately predicted. However, several recent studies have employed various grid sizes without providing an adequate explanation for their choice. This paper suggests the optimal grid size based on a comparison of numerical models with analytical solutions. Discrepancies between numerical and analytical solutions result from the effect of model boundaries as well as the grid size. By nullifying boundary effects, the errors solely associated with the grid size could be analyzed. The optimal grid size yielding accurate numerical solutions was thus derived. The suggested relationship between tunnel radius and optimal grid size is analogous to the relationship between the equivalent well block radius and grid size.

Optimal alternative decision technique of accommodation facility in multi-utility tunnel using VE/LCC analysis (VE/LCC 분석을 통한 공동구 수용시설물의 최적 대안 결정 기법)

  • Sim, oung-Jong;Jin, Kyu-Nam;Oh, Won-Joon;Cho, Choong-Yeun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.317-329
    • /
    • 2018
  • The study on the existing multi-utility tunnel has examined the general aspects related to the installation of multi-utility tunnel rather than the optimal design and feasibility analysis of accommodation facility in multi-utility tunnel. In the basic planning stage related to the introduction of multi-utility tunnel, it is difficult to determine accommodation facility due to lack of relevant indicators and data. In this paper, VE/LCC analysis method is suggested for the optimal alternative decision of accommodation facilities in multi-utility tunnel. The analysis of the items of individual accommodation facility and the value index for LCC costs were applied to the kind alternatives, and the priorities of each kind were analyzed. In addition, the domestic multi-utility tunnel and analysis result are compared. The result of this study will be helpful to shorten the time and convenience of the user in the process of determining accommodation facility including the first designers when introducing multi-utility tunnel.

Numerical Predictions of Fire Characteristics of Passenger Train Fire in an Underground Subway Tunnel, Depending on Change of Location of Ventilation Facility (지하철 터널내의 객차 화재발생시 환기실 위치변화에 따른 화재특성의 수치적 연구)

  • Son, Bong-Sei;Chang, Hee-Chul
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • The study is to perform numerical analysis of train fire characteristics in an underground subway tunnel, depending the different locations of ventilation facility. To study the characteristics of train fire, two kinds of worst-case scenarios are selected, based on escape distance, escape time, and fire zone, and trends and thermal environments of tunnel are analyzed by changing the locations of ventilation facility for times. Fire characteristics is calculated by using FLUENT v.6.3.26, and turbulent flow is calculated by using the standard k-${\varepsilon}$ model. The numerical results show distribution of carbon monoxide concentration, temperature, and velocity. The results of this study will contribute to building the most suitable ventilation systems when designing subway stations and tunnels.

Structural and Functional Measurements of a Space Truss Frame for Maintenance Works in Tunnels (터널의 유지보수공사 개선을 위한 가설 스페이스 트러스 프레임의 사용성 및 안정성 평가)

  • Lee, Dong Kyu;Kim, Do Hwan;Kim, Jin Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.92-98
    • /
    • 2012
  • This study shows details of a specific space truss frame structure devised to carry out maintenance and repair temporary works in tunnels. The purpose of this study is to verify structural safety and function of the innovative truss structure through an analysis tool, i.e.. ABAQUS, which is a suite of software application for finite element analysis and computer aided engineering. And then optimized size, i.e., thickness and diameter of truss members is evaluated in practice. In this study, construction methods in the temporary works are additionally represented by using the new space truss frame structure.