• Title/Summary/Keyword: 최적 설계 인자

Search Result 364, Processing Time 0.021 seconds

Stress Analysis of Pressurization Type Propellant Tank in the Satellite (인공위성용 능동가압형 추진제 탱크의 응력 해석)

  • 한근조;심재준;최진철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.21-21
    • /
    • 1997
  • 인공위성용 추진제 탱크를 개발하기 위해 여러 설계인자를 설정하여 각 인자가 탱크벽면에 미치는 응력분포 영향을 구하고, 또한 최적의 인자 값을 구하기 위해 각 인자의 변화에 따라서 구조해석을 수행하였다. 탱크 지지부 위치와 탱크 벽면 두께 변화에 따른 탱크 벽면에 미치는 응력분포 영향을 고찰하기 위해 1/4 모델을 설정하였고, 연료배출구의 위치변화(경사각돈)에 따른 응력분포는 1/2 모델을 설정하여 해석을 하였다. 탱크에 작용하는 하중은 연료압력에 의해 발생하는 정하중(350 psi)을 가하며 또한, 발사 시 발사체로부터 전달되는 최대동하중(llg)을 고려하였다. 그리고, 탱크가 인공위성에 장착될 때에 발생하는 다양한 장착조건에 대해서 구조해석을 수행하였고, 추진제 배출구 각도가 $0^{\circ}$ 에서 $25^{\circ}C$까지 변화할 때 탱크 벽면에 미치는 응력분포 영향을 구했다. 그래서 각 조건에서 구한 상당응력분포와 인자의 최적 값은 추진제 탱크를 설계하기 위한 기초적인 자료로 활용하고자 한다.

  • PDF

Alternative optimization procedure for parameter design using neural network without SN (파라미터 설계에서 신호대 잡음비 사용 없이 신경망을 이용한 최적화 대체방안)

  • Na, Myung-Whan;Kwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.211-218
    • /
    • 2010
  • Taguchi has used the signal-to-noise ratio (SN) to achieve the appropriate set of operating conditions where variability around target is low in the Taguchi parameter design. Many Statisticians criticize the Taguchi techniques of analysis, particularly those based on the SN. Moreover, there are difficulties in practical application, such as complexity and nonlinear relationships among quality characteristics and design (control) factors, and interactions occurred among control factors. Neural networks have a learning capability and model free characteristics. There characteristics support neural networks as a competitive tool in processing multivariable input-output implementation. In this paper we propose a substantially simpler optimization procedure for parameter design using neural network without resorting to SN. An example is illustrated to compare the difference between the Taguchi method and neural network method.

A Study on Hydrophone Array Design Optimization for Cavitation Tunnel Noise Measurements (캐비테이션 터널 시험용 청음기배열 최적 설계기법)

  • Park, Cheolsoo;Seol, Hanshin;Kim, Gundo;Park, Youngha
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.237-246
    • /
    • 2013
  • This paper proposes a hydrophone array design optimization technique for cavitation tunnel noise measurements. The optimization technique comprises of design parameters, an objective function and an optimization algorithm. The design parameters are defined for circular, spiral and multi-spiral arrays. The objective function is defined so as to consider the mainlobe beamwidth and the maximum sidelobe level simultaneously. A global optimization scheme is applied to the array design using very fast simulated reannealing (VFSR). After applying the optimization technique to arrays respectively, the peak sidelobe level and the mainlobe beamwidth of optimum arrays are analyzed. Finally the array patterns considering multiple reflections in the cavitation tunnel are evaluated to validate the proposed method.

Application of Optimal Design Method to Agent Discharge Flow Calculation of Gaseous Fire Extinguishing Systems (최적설계법을 응용한 가스계 소화설비의 약제방출량 산출)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.51-56
    • /
    • 2015
  • In this study, optimal design methods were applied to the agent discharge flow of clean agent fire extinguishing systems. The methods combined optimal design theory and engineering theory for engineering analysis in a design program or coast savings in value engineering. Optimal design parameters were determined to optimize the agent discharge flow based on the design theory of the clean agent fire extinguishing systems and the theory of optimal design. The design factors were verified in regard to suitability for the performance of fire extinguishing systems. The results provide a foundation for optimal design method methods in other fire extinguishing systems. Optimization of the agent discharge flow of the discharge nozzle was confirmed by the constraints on the inner diameter of the discharge nozzle and the pipe, agent arrival time, flow, and pressure variation of the agent. The deviation of discharge pressure and agent time of the agent discharge nozzle were found to correlate with the pressure variation.

Topology Optimization Using Equivalent Material Properties Prediction Techniques of Particulate-Reinforced Composites (입자보강 복합재료의 등가 재료상수 예측기법을 이용한 위상 최적설계)

  • 임오강;이진식
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.267-274
    • /
    • 1998
  • 본 연구에서는 기지개와 미시구멍으로 구성된 복합재료에 입자보강 복합재료의 등가 재료상수 예측기법인 평균장 근사이론과 등가원리를 적용하여 위상 최적화에 필요한 등가 재료상수와 설계변수와의 상관관계식을 유도하였다. 또한, 유도된 관계식에 중간값을 갖는 설계변수의 수를 줄이기 위하여 벌칙인자를 도입하였다. 그리고 본 연구의 타당성을 검증하기 위하여 벌칙인자가 도입된 위상 최적화문제를 순차이차계획법인 PLBA 알고리즘을 이용하여 해석하였다.

  • PDF

Optimal Shape of a Ramjet Intake by using a Response Surface Method (반응표면법을 이용한 램제트 엔진 흡입구 설계인자 최적화)

  • Oh, Seok-Jin;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.68-74
    • /
    • 2005
  • Optimal shape of a typical ramjet intake is examined numerically to maximize the total pressure recovery. A response surface method is introduced to approximately predict its performance with respect to the design parameters over the each design domain. The first deflection angle of ramp, the area of inlet throat, and the diffuser angle are chosen as a design parameter. ANOVA is used to verify the trustability of the achieved response surface. The total pressure recovery of the optimum model, compared to that of the base model, is increased by 36%. The loss of viscosity through the diffuser is estimated less than 5%.

Deduction and Verification of Optimal Factors for Stent Structure and Mechanical Reaction Using Finite Element Analysis (스텐트의 구조 및 기계적인 반응에 대한 최적인자 도출과 유한요소해석법을 통한 검증)

  • Jeon, Dong-Min;Jung, Won-Gyun;Kim, Han-Ki;Kim, Sang-Ho;Shin, Il-Gyun;Jang, Hong-Seok;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • Recently, along with technology development of endoscopic equipment, a stent has been developed for the convenience of operation, shortening of recovery times, and reduction of patient's pain. To this end, optimal factors are simulated for the stent structure and mechanical reaction and verified using finite element analysis. In order to compare to present commercialized product such as Zilver (Cook, Bloomington, Indiana, USA) and S.M.A.R.T (Cordis, Bridgewater Towsnhip, New Jersey, USA), mechanical impact factors were determined through Taguchi factor analysis, and flexibility and expandability of all the products including ours were tested using finite element analysis. Also, important factors were sought that fulfill the optimal condition using central composition method of response surface analysis, and optimal design were carried out based on the important factors. From the centra composition method of Response surface analysis, it is found that importat factors for flexibility is stent thickness (T) and unit area (W) and those for expandability is stent thickness (T). In results, important factors for optimum condition are 0.17 mm for stent thickness (T) and $0.09\;mm^2$ for unit area (W). Determined and verified by finite element analysis in out research institute, a stent was manufactured and tested with the results of better flexibility and expandability in optimal condition compared to other products. Recently, As Finite element analysis stent mechanical property assessment for research much proceed. But time and reduce expenses research rarely stent of optimum coditions. In this research, Important factor as mechanical impact factor stent Taguchi factor analysis arrangement to find flexibility with expansibility as Finite element analysis. Also, Using to Center composition method of Response surface method appropriate optimized condition searching for important factor, these considering had design optimized. Production stent time and reduce expenses was able to do the more coincide with optimum conditions. These kind of things as application plan industry of stent development period of time and reduce expenses etc. be of help to many economic development.

Efficient Robust Design Optimization Using Statistical Moment Based on Multiplicative Decomposition Considering Non-normal Noise Factors (비정규 분포의 잡음인자를 고려한 곱분해기법 기반의 통계 모멘트를 이용한 효율적인 강건 최적설계)

  • Cho, Su-Gil;Lee, Min-Uk;Lim, Woo-Chul;Choi, Jong-Su;Kim, Hyung-Woo;Hong, Sup;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1305-1310
    • /
    • 2012
  • The performance of a system can be affected by the variance of noise factors, which arise owing to uncertainties of the material properties and environmental factors acting on the system. For robust design optimization of the system performance, it is necessary to minimize the effect of the variance of the noise factors that are impossible to control. However, present robust design techniques consider the variation of design factors, and not the noise factors, as being important. Furthermore, it is necessary to assume a normal distribution; however, a normal distribution is often not suitable to estimate the variations. In this study, a robust design technique is proposed to consider the variation of noise factors that are estimated as non-normal distributions in a real experiment. As an example of an engineering problem, a deep-sea manganese nodule miner tracked vehicle is used to demonstrate the feasibility of the proposed method.

A Study on the Optimum Design of SUV Rear Spoiler (SUV 차량 리어 스포일러 최적 형상에 관한 연구)

  • Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.689-694
    • /
    • 2018
  • Recently, fuel consumption efficiency has become the most important issue in the vehicle development process due to the problem of environmental pollution. The air flow patterns of the vehicle body line and rear part are the most important elements affecting the fuel consumption efficiency. Especially, the airflow pattern of the vehicle rear part is the most important design factor to be considered in rear spoiler design. In this paper, the control factors affecting the airflow of the rear spoiler are determined, the airflow sensitivity of these control factors are tested and, then, the optimized control factors to reduce the airflow drag force are proposed. The model of optimized control factors is tested and the values of the optimized control factors are changed by analyzing the S/N ratio and mean value. Finally, the new modified model incorporating the optimized control factors is tested in an air flow tunnel and its ability to decrease the air drag and reduce the cost is verified.

Optimum Design of Piled Raft Foundations Using A Genetic Algorithm (유전자 알고이즘을 이용한 Piled Raft 기초의 최적설계)

  • Kim, Hong-Taek;Kang, In-Kyr;Jeon, Eung-Jin;Park, Sa-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.47-55
    • /
    • 2000
  • 본 연구에서는, 유전자 알고리즘을 이용한 piled raft 기초의 최적설계 기법을 제시하였다. 최적설계에 사용한 목적함수는 구조물의 사용한계에 해당하는 부등침하량과 piled raft 기초의 시고비용 차원에서의 말뚝과 raft의 총 중량으로 하였다. 유전자 알고리즘은 다읜의 적자생존의 법칙을 따르는 자연진화 법칙을 바탕으로 한 최적화 기법이다. 본 연구에서는 piled raft 기초의 해석방법으로 Clancy(1993)가 제시한 "hybrid" 해석방법을 사용하였으며, 유전자 알고리즘기법은 Goldberg(1989)가 제시한 단순 유전자 알고리즘(SGA)을 적용하였다. 또한 유전자 알고리즘을 이용한 최적설계기법의 유효성을 평가하기 위해 설계예제 및 매개변수변화연구를 통해 piled raft 기초시스템의 중요 설계인자들에 대한 분석을 수행하였다. 매개변수변화연구로부터 말뚝의 길이와 raft의 두께가 증가할수록 piled raft 기초시스템의 전체 중량은 일정한 값에 점차적으로 수렴하였으며, 지반의 강정, raft의 두께 말뚝의 길이 및 강성이 증가할수록 말뚝의 최적위치는 raft의 중앙에 집중되는 경향으로 나타났다.경향으로 나타났다.

  • PDF