• 제목/요약/키워드: 최적 분류

검색결과 1,054건 처리시간 0.026초

분류층 석탄가스화기 Slag 용융특성 예측 (A Prediction of Coal Ash Slagging for Entrained Flow Gasifiers)

  • 구자형;김봉근;김유석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.108.1-108.1
    • /
    • 2010
  • 분류층 가스화기는 석탄과 산소(공기) 및 수증기가 반응하여 $1200{\sim}1600^{\circ}C$의 고온, 20~60기압의 고압에서 작동되어 합성가스를 생성하며 합성가스에 포함된 입자 및 황화합물 등을 정제설비를 통하여 정제 후 발전 및 화학원료로 사용한다. 석탄가스화 중 석탄에 포함된 대부분의 회분은 용융슬래그 형태로 가스화기 벽면을 따라 흘러 내려 가스화기 하부의 냉각수조에서 급랭되어 배출된다. 이때 용융슬래그의 원활한 배출을 위해서는 일정범위의 점도를 유지하는 것이 필요하다. 슬래그의 점도는 가스화기 온도 및 Ash의 조성에 따라 크게 변하며 가스화기 설계 및 운전 시 매우 중요한 변수이다. 따라서 최적의 설계 및 운전을 위해서는 Ash의 점도예측이 중요하며, 분류층 가스화기내부에서 Ash 점도 예측을 위한 DooVisco 프로그램을 개발하였다. DooVisco는 가스화기 내부에서 슬래그 용융온도 및 온도별 점도, 가스화기 최소 운전온도 및 석회석 투입 효과 분석뿐만 아니라 석탄의 혼합 사용 시의 특성 예측도 가능하도록 개발되었다. DooVisco는 슬래그 주요 4성분인 SiO2, Al2O3, CaO, FeO 성분에 대한 Phase Diagram을 이용하여 1차적으로 슬래그용융온도(Liquidus Temperature)를 예측하고, 주요 4 성분 외에 Na2O, MgO, K2O, TiO2 등을 고려한 Kalmanovich Model을 이용하여 점도를 예측한다. 최종적으로 슬래그 용융온도와 점도를 활용하여 분류층 가스화기 운전가능 온도범위를 예측한다. 개발된 DooVisco를 활용하여 300MW급 실증 IGCC 플랜트에 사용가능성이 있는 석탄을 대상으로 슬래그의 용융온도 및 점도 등을 예측하였으며 최적 운전을 위한 슬form점도 조절용 Flux인 석회석 투입량 등을 평가하였다. 평가 결과 슬래그 용융온도가 $1700^{\circ}C$ 이상으로 석회석 투입이 필요하다고 판단되었다. 약 가스화기 내부 온도를 $1500^{\circ}C$ 정도에서 원활한 운전을 위해서는 석탄 대비 약 10% 내외의 석회석 투입이 필요할 것으로 평가되었다. DooVisco는 분류층 가스화기 설 계시 가스화기 최적 운전 온도 설정 및 Flux 투입필요성, 종류, 투입량 선정에 활용될 수 있을 뿐만 아니라 플랜트 운전시 석탄의 탄종 적합성 등을 판단하는데 활용될 수 있을 것이라 판단된다.

  • PDF

최적 R파 검출 기반의 R피크 패턴과 RR간격을 통한 조기심실수축 분류 (Premature Ventricular Contraction Classification through R Peak Pattern and RR Interval based on Optimal R Wave Detection)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.233-242
    • /
    • 2018
  • 조기심실수축(Premature Ventricular Contraction) 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지 이론, Support Vector Machine 등과 같은 비선형 방법이 주로 사용되어 왔다. 이러한 대부분의 방법들은 데이터의 가공 및 연산이 복잡하다. 이러한 문제점을 극복하기 위해서 최적의 R파를 검출하고 이를 통해 R피크 기반의 특징점만을 정확하게 검출함으로써 최소한의 연산량으로 PVC를 분류할 수 있는 알고리즘이 필요하다. 따라서 본 연구에서는 전처리를 통해 잡음이 제거된 심전도 신호에서 최적 문턱치에 따른 R파를 검출하고, RR간격과 R피크 패턴을 추출한다. 이후 RR간격과 R피크 패턴에 따라 PVC를 분류하였다. 제안한 방법의 우수성을 입증하기 위해 PVC가 30개 이상 포함된 MIT-BIH 9개의 레코드를 대상으로 한 R파의 평균 검출율은 99.02%의 성능을 나타내었으며, PVC 부정맥은 각각 94.85%의 평균 분류율을 나타내었다.

카사그란데방법과 원추관입시험방법의 상관관계와 지반개량제의 적용성에 대한 연구 (Correlation between Casagrande Test and Fall Cone Test Methods and their Applicability in Ground Improvement)

  • 고건우;여동준;김경민;이병석
    • 한국지반공학회논문집
    • /
    • 제39권2호
    • /
    • pp.5-17
    • /
    • 2023
  • 본 연구에서는 국내 국지성 호우의 증가로 인한 피해의 보호효과가 탁월한 지반개량제를 표층개량공법에 활용하기 위해 붕괴된 15개소의 현장토를 대상으로 흙의 분류 및 일축압축시험을 진행하여 토질별 최적배합비를 제안하는 연구를 진행하였다. 현장토에 대해 Casagrande법과 원추관입시험법을 실시하여 액·소성한계값의 비교, 흙의 분류 및 서로의 상관관계에 대한 관계식을 유도하였다. 각각의 흙의 분류에 대해 일축압축강도를 이용하여 지반개량제의 최적 배합비를 도출한 결과, Casagrande법으로 분류한 경우 실험자의 숙련도 차이와 시험의 오차에 의해 세립토의 분류가 명확하지 않았지만, 원추관입시험법으로 분류하였을 때 명확한 최적 배합비를 제안할 수 있었다.

유전알고리즘을 이용한 최적퍼지 규칙베이스 시스템의 설계 (Design of Optimal Fuzzy Rule-base Systems with Genetic Algorithm)

  • 김종율
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.439-442
    • /
    • 2007
  • 본 논문은 퍼지 분류를 위한 퍼지 규칙베이스 시스템에 대한 최적화 해법으로서 유전 알고리즘에 대해 살펴본다. 즉 퍼지 규칙베이스를 이용하는 퍼지 분류 시스템을 최적화률 하는 유전 알고리즘을 제안한다. 본 논문에서 다루는 최적화는 추출되는 퍼지 규칙의 수와 퍼지 분류 시스템의 입력 패턴을 정확하게 분류하는 지에 대한 성능을 포괄적으로 수행하는 것을 의미한다. 마지막으로 본 논문에서 제안하는 유전 알고리즘을 이용하여 수치실험을 수행하고 그 결과를 통해 제안하는 알고리즘의 유효성과 효율성을 생성된 퍼지 규칙의 수와 퍼지 분류 시스템의 성능의 관점에서 논의한다.

  • PDF

계층적 분류체계를 위한 자동분류 기법에 관한 연구 (An Experimental Study on Text Categorization for Hierarchical Classification)

  • 이영숙;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2001년도 제8회 학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2001
  • 이 연구는 계층적 분류체계를 기반으로 자동분류를 수행할 HiCat 알고리즘을 제안한다. HiCat 알고리즘은 DDC 지식베이스의 주제어와 기계학습을 거친 정보를 동시에 이용하고, 각 계층별로 주제적합성가중치를 구해 최종 주제범주를 결정한다. 이 알고리즘이 최적의 성능을 보이는 조건을 알아보고, 일반 분류기와의 성능 비교를 통해 HiCat 알고리즘을 평가해 보았다.

  • PDF

결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류 (Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type)

  • 김양석;이도환;김성국
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1681-1689
    • /
    • 2010
  • Support Vector Machine(SVM)을 이용한 회전기계 진단 연구가 많이 수행되어 왔으나 결함 분류성능은 입력 특징과 더불어 다중 분류 방법, 이진분류기, 커널함수 등에 따라 다르다. SVM 을 이용한 대부분의 기존 연구들은 한번 입력 특징들을 선정하면 결함 분류시 동일한 특징데이터를 이용한다. 본 논문에서는 회전기계의 다양한 결함조건에서 측정한 진동신호로부터 추출한 통계적 특징들을 이용하여 각각의 결함을 분류하기 위한 최적 특징들을 선정한 후, 해당 결함상태를 분류하기 위한 SVM 학습과 분류에 각각 이용하였다. 실험자료를 이용한 검증 결과, 제안한 단계 분류 방법이 상대적으로 적은 학습시간으로 단일 다중 분류 방법과 유사한 분류 성능을 얻을 수 있었다.

심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 (Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1542-1550
    • /
    • 2019
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 퍼지(Fuzzy), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 오류 역전파 알고리즘을 이용한 부정맥 분류에 가장 많이 사용되고 있다. 딥러닝 모델을 심전도 신호에 적용하기 위해서는 적절한 모델선택과 파라미터를 최적에 가깝게 선택할 필요가 있다. 본 연구에서는 심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG신호에서 R파를 검출하고 QRS와 RR간격 세그먼트를 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 검증데이터로 모델을 평가하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 딥러닝 모델로 훈련 및 검증 정확도를 확인하였다. 성능 평가 결과 R파의 평균 검출 성능은 99.77%, PVC는 97.84의 평균 분류율을 나타내었다.

재해 유형별 최적 위성 영상 선정에 관한 연구 (A Study on Selection of Optimal Satellite Imagery by Disaster Type)

  • 임소망;강기묵;유완식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.279-279
    • /
    • 2021
  • 위성영상정보는 센서의 종류, 취득, 분석, 재난과 위성영상 특성 매칭 등의 제약으로 재난 상황에서 제한적으로 사용되었다. 일반적으로 인공위성의 종류는 탑재한 센서의 정보제공 능력 범위에 따라 분류 가능하며 이에 따라 대상 범위가 결정된다. 본 연구에서는 재난의 예측, 탐지, 사후처리를 위한 위성자료의 취득과 활용을 위해 다양한 위성과 탑재된 센서의 궤도, 공간 해상도, 파장대 등의 특성에 대하여 분석하고 재난유형별로 최적 위성영상을 선정하였다. 행정안전부에서는 재난과 재해의 유형을 자연재난(10종)과 사회재난(27종)으로 분류하였다. 위성영상 활용이 가능한 재난 유형은 가시적으로 확인이 가능한 자연재난에 해당하며 그 중 태풍, 홍수, 가뭄, 산불 등 총 4종의 재난유형별로 가용한 최적의 위성영상을 분석하였다. 재난관측에 사용 가능한 대표적인 탑재체의 종류는 극궤도 지구관측 위성에서 광학과 SAR로 구분할 수 있다. 각 기본 특성에 따라 제공되는 정보의 종류가 분류되며 광학 센서는 태양복사 및 지구복사에너지 파장 영역 중 가시광선-근적외선-단파적외선-열적외선 파장대 영역의 분광 정보를 제공할 수 있는 다중 밴드들로 구성된다. 지표의 특정 대상이나 물질을 탐지하고 변화를 감지·분석하는데 유용하여 홍수, 태풍, 지진 등 자연 및 사회 재난·재해 관측에 유용하게 이용된다. SAR 센서는 장파장의 전자기파를 방출한 후 돌아오는 신호를 활용하여 대상에 대한 정보를 획득한다. 대기의 효과 및 요소를 투과하는 주파수 대역별 장파장 밴드 정보를 활용하여 고해상도의 대상 표면, 위치, 형태 등의 정보를 측량 및 관측하므로 중·광역 지역에 제약 없이 영상정보를 획득할 수 있어 산사태, 홍수, 지진, 등의 재난 모니터링에 유용하다. 이러한 다종 위성별 센서들의 특징(공간 해상도, 파장대별 밴드 특성, 관측폭, 재방문 주기 등)들을 분석하여 재난유형별로 가용한 무료/상용 지구관측위성을 분류한 결과 태풍에는 광역관측, 정지궤도 위성, 홍수에는 광학 및 SAR 고해상도 위성, 가뭄은 광역관측, 다분광 광학 위성 그리고 산불에는 정지궤도, 광학, SAR 위성이 적합함을 알 수 있다.

  • PDF

MFCC를 이용한 GMM 기반의 음성/혼합 신호 분류 (Speech/Mixed Content Signal Classification Based on GMM Using MFCC)

  • 김지은;이인성
    • 전자공학회논문지
    • /
    • 제50권2호
    • /
    • pp.185-192
    • /
    • 2013
  • 본 논문에서는 MFCC를 이용한 GMM 기반의 음성과 혼합 신호 분류 알고리즘을 MPEG의 표준 코덱인 USAC에 적용하였다. 효과적인 패턴 인식을 위해 GMM을 이용하였고, EM알고리즘을 사용하여 최적의 GMM 파라미터를 추출하였다. 제안하는 분류 알고리즘은 두 가지 중요한 부분으로 나뉜다. 첫째는 GMM을 통해 최적의 파라미터를 추출하는 것 이고, 두 번째는 MFCC 값을 이용한 패턴인식을 통해 음성/혼합 신호를 분류하였다. 제안된 알고리즘의 성능을 평가한 결과 MFCC를 이용한 GMM 기반의 제안된 방법이 기존 USAC의 방법보다 우수한 음성/혼합 신호 분류 성능을 보였다.

문제분류규칙을 이용한 변수 순서화 알고리즘 (Variable Ordering Algorithms Using Problem Classifying)

  • 손석원
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.127-135
    • /
    • 2011
  • 백트래킹을 이용한 깊이우선탐색에서 해를 빨리 찾기 위한 방법 중 하나는 결정변수의 순서를 효과적으로 배열하는 것이다. 이 때 문제의 동적 및 정적 특성을 고려한 변수 순서화 알고리즘 개발은 매우 중요한 문제이다. 그러나 문제에 적합한 최적의 변수 순서화 알고리즘을 개발하는 것은 어려운 문제이다. 본 논문에서는 변수의 속성에 기반을 두어 문제의 형태를 규정하는 문제분류규칙을 제안하고 이 규칙을 이용하여 문제에 적합한 변수 순서화 알고리즘의 형태를 예측할 수 있게 한다. 결정변수가 동적 및 정적 특성을 갖는 DS-type 문제로서 주파수 할당문제를 선택하여 최적의 변수 순서화 알고리즘을 예측한다. 또한 문제분류규칙에 의해 생성되지 않는 특별한 형태의 문제인 기지국 위치문제를 적용하여 제안하는 문제분류규칙의 효용성을 입증한다.