DNA 마이크로어레이 기술의 발전은 암의 조기 발견 및 예후 예측을 가능하게 해주었으며, 이와 관련된 많은 연구가 진행 중이다. 마이크로어레이 데이터의 분류에서 관련 유전자들의 선택은 필수적이며, 유전자 선택방법은 분류기와 짝을 이루어 특징-분류기를 형성한다. 이제까지 여러 가지 특징-분류기를 사용하여 마이크로어레이 데이터를 분류해 왔지만, 알고리즘의 한계와 데이터의 결함 등으로 인하여 최적의 특징-분류기를 찾기 어려웠다. 따라서 앙상블 분류기를 이용하여 높은 분류성능을 얻는 방법이 시도되어왔으며. 최적의 것을 찾기 위하여 유전자 알고리즘이 사용되기도 했다. 본 논문에서는 이를 발전시켜 다양한 최적의 앙상블을 생성하기 위해 종분화 방법을 사용한다. 림프종 암 데이터에 대하여 leave-one-out cross-validation을 적용한 결과, 제안한 방법으로 다양한 최적해를 탐색하는 것을 확인할 수 있었다.
ROC와 CAP 곡선을 이용하여 다양한 정확도 측도를 바탕으로 최적분류점을 추정하는 많은 연구가 있다. 본 연구에서는 ROC와 CAP 곡선의 특정한 부분 면적을 나타내는 대안적인 통계량을 제안한다. 새롭게 정의된 부분 면적을 나타내는 통계량의 미분방정식을 이용하여 ROC와 CAP 함수와의 관계를 살펴보고, 다음으로는 ROC와 CAP 곡선에 대한 다양한 정확도 측도들의 조건에서의 최적분류점과의 관계를 유도한다. 혼합분포를 구성하는 두 종류의 분포함수를 다양한 정규분포로 가정하여 최적분류점을 설정하고, 다양한 정확도 측도들의 조건에서의 최적분류점에 대응하는 제1종과 제2종 오류의 크기를 탐색하고 토론한다.
의학통계와 신용평가 분야에서 혼합분포함수를 판별하는 최적분류점 추정하기 위하여 판별력을 측정하는 다양한 정확도 측도들이 존재한다. 최근에 혼동행렬 빈도수로 표현되는 Matthews의 상관계수와 정밀도와 재현율의 조화평균인 F1 통계량의 정확도 측도들이 최적분류점을 추정하는데 연구되었다. 본 연구에서는 이런 정확도 측도들 중에서 표본크기에 의존하는 정확도 측도들은 두 표본크기 차이가 많은 경우에 최적분류점을 설정하는데 적절하지 않음을 발견한다. 그리고 대안적인 정확도 측도로 혼동행렬의 비율들의 함수인 상관계수를 정의하고, 이를 최대화하는 분류점을 최적분류점으로 추정하는 방법을 제안하고 이 방법의 유용성과 활용성에 대하여 토론한다.
본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.
DNA microarray기술의 발달로 한꺼번에 수천 개 유전자의 발현 정보를 얻는 것이 가능해졌는데, 이렇게 얻어진 데이터를 효과적으로 분류하는 시스템을 만들어놓으면 새로운 샘플이 정상상태인지, 질병을 가진 상태인지 예측할 수 있다. 분류 시스템을 위하여 여러 가지 특징선택방법들과 분류기법들을 사용할 수 있는데, 모든 상황에서 항상 뛰어난 성능을 보이는 특징선택법이나 분류기를 찾기는 힘들다. 안정되고 개선된 성능을 내기 위해서 특징-분류기의 앙상블을 이용할 수 있는데, 앙상블에 이용될 수 있는 특징선택 방법이나 분류기의 수가 많다면, 앙상블을 만들 수 있는 조합이 많아지기 때문에, 모든 조합에 대하여 앙상블 결과를 구하기는 거의 불가능하다. 이를 해결하기 위하여 본 논문에서는 유전자알고리즘을 이용하여 모든 앙상블 결과를 계산하지 않으면서 최적의 앙상블을 찾아내는 방법을 제안하였으며, 실제로 림프종 암 데이터에 적용한 결과 100%의 결합결과를 보이는 최적의 앙상블을 효과적으로 찾아내었다.
데이타의 분류기법은 공장자동화나 로보틱스 분야에서 사용되는 지능시스템의 중요한 기능이다. 일반적으로 이러한 분류시스템을 설계하고자 할때, 준비된 데이타는 레이블링 되어야 하고, 분류하고자하는 클래스의 수도 설정되어야한다. 본 연구에서는 이러한 사전 정보없이 분류 시스템을 설계하고자 최적 클러스터 분석 모델, OFCAM을 제안한다. 이때 사용되는 최적 클러스터 분석 모델은 데이타의 구조에 대한 사전정보 없이, 주어진 데이타의 최적 클러스터의 수와 클러스터 중심점 및 각 데이타에 대한 소속정보를 구해준다. 이를 위하여 OFCAM에서는 목적합수를 가지는 비교사 학습신경망과 클러스터 타당성 전략을 결합하고 있다. OFCAM의 결과를 바탕으로 분류시스템의 데이터베이스, PCSDB가 구축되며 이는 결정 모듈에서 쉽게 활용될 수 있음을 보인다. 이와같은 방법은 하나의 데이타베이스 안에서 필요한 테이블만을 첨가하므로 독립적으로 여러 응용의 분류문제를 다룰 수 있다.
신용평가연구에서 확률변수 스코어와 정상과 부도상태의 모수공간으로 정의된 혼합분포에서 확률밀도함수의 관계식으로 최적분류점을 추정하고 이에 대응하는 오류합의 크기를 비교하는 연구가 정규분포의 가정하에 이루어져있는데 본 연구에서는 비정규분포인 와이블, 로지스틱 그리고 감마분포로 확장하여 가설검정을 이용하는 방법과 전체정확도와 진실율을 최대화하는 방법에 의한 최적분류점을 각각 구하고 최적분류점에 대응하는 제I종과 제II종 오류합의 크기를 비교하여 효율성을 비교 토론한다.
혼합분포를 가정한 신용평가연구에서 부도차주를 정상으로 예측하거나 정상차주를 부도로 예측하는 오류를 최소화하는 분류점을 추정하는 방법을 토론한다. 확률변수 스코어와 정상과 부도상태의 모수공간으로 정의된 확률밀도함수들에 대하여 강력검정과 일반화가능도비검정을 이용하여 최적분류점의 추정방법을 제안하고, ROC와 CAP 곡선에서 분류정확도를 측정하는 정확도(accuarcy)와 진실율(true rate)을 이용하여 이 측도를 최대로 하는 최적분류점을 확률밀도함수의 관계식으로 추정하는 방법을 제안한다. 다양한 정규분포에서 가설검정, 정확도 그러고 진실율을 이용하는 세가지 방법의 최적분류점을 구하고 각최적분류점에 대응하는 제 I 종과 제 II 종 오류합의 크기를 비교하여 효율성을 토론한다.
오즈 곡선으로 설명이 가능한 정확도 측도들을 살펴보고, 오즈 곡선의 성질을 바탕으로 대안적인 최대 사각형 정확도 측도를 제안한다. 다양한 확률분포함수와 실증예제를 고려하여 정확도 측도들에 대응하는 분류점을 구하고, 분류점을 측정하는 통계량들을 비교하면서 특징을 토론한다. 그러므로 ROC 곡선 등과 유사하게 오즈 곡선으로부터도 최적분류점들을 발견하고 설명할 수 있으며, 최대사각형 측도는 이진 분류모형의 성능을 향상시킬 수 있는 정확도 측도로 활용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.