• Title/Summary/Keyword: 최적회귀모형

Search Result 228, Processing Time 0.019 seconds

An Estimation of the Optimal Hedge Ratio in KOSPI 200 Spot and Futures (KOSPI 200 현(現).선물간(先物間) 최적(最適)헤지비율(比率)의 추정(推定))

  • Chung, Han-Kyu
    • The Korean Journal of Financial Management
    • /
    • v.16 no.1
    • /
    • pp.223-243
    • /
    • 1999
  • 포트폴리오의 위험을 통제하거나 감소시키기 위해서 헤저들은 최적헤지비율을 추정하여야 하는데, 최적헤지비율의 추정치는 사용하는 모형에 따라 많은 차이를 보인다. 전통적인 회귀분석모형에 의하여 추정된 최적헤지비율은 시계열자료의 불안정성(nonstationary) 등으로 인하여 잘못될 가능성이 많으며, 잘못 추정된 헤지비율을 그대로 이용할 경우 현물포트폴리오의 시장위험을 최소화시키지 못하고 헤징비용을 증가시키는 결과를 초래한다. 시계열자료의 불안정성으로 말미암아 야기되는 문제점들을 개선할 수 있는 모형으로서 오차 수정모형(Error Correction Model : ECM)이 널리 이용되고 있다. 본 연구는 ECM을 사용하여 추정된 최적헤지비율과 전통적 회귀분석모형을 사용하여 추정한 최적헤지비율을 비교하여 어떤 모형으로 추정한 헤지비율이 더 정확한지를 평가하는데 목적을 두고 있다. 즉, 본 연구는 KOSPI 200 현 선물지수 자료를 대상으로 ECM과 전통적 회귀분석모형에 의한 최적헤지비율을 추정하고 각 모형의 설명력과 예측력을 비교하고자 한다. 실증분석 결과, KOSPI 200 현물지수와 KOSPI 200 선물지수간에는 공적분 관계가 존재하며, ECM과 전통적 회귀분석모형을 이용하여 추정한 최적헤지비율의 크기는 서로 다르며, ECM을 이용할 때 모형의 설명력이 조금 더 높게 나타났으며, 예측력도 ECM이 좀더 우월한 것으로 나타났다.

  • PDF

Predicting ozone warning days based on an optimal time series model (최적 시계열 모형에 기초한 오존주의보 날짜 예측)

  • Park, Cheol-Yong;Kim, Hyun-Il
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.293-299
    • /
    • 2009
  • In this article, we consider linear models such as regression, ARIMA (autoregressive integrated moving average), and regression+ARIMA (regression with ARIMA errors) for predicting hourly ozone concentration level in two areas of Daegu. Based on RASE(root average squared error), it is shown that the ARIMA is the best model in one area and that the regression+ARIMA model is the best in the other area. We further analyze the residuals from the optimal models, so that we might predict the ozone warning days where at least one of the hourly ozone concentration levels is over 120 ppb. Based on the training data in the years from 2000 to 2003, it is found that 35 ppb is a good cutoff value of residulas for predicting the ozone warning days. In on area of Daegu, our method predicts correctly one of two ozone warning days of 2004 as well as all of the remaining 364 non-warning days. In the other area, our methods predicts correctly all of one ozone warning days and 365 non-warning days of 2004.

  • PDF

Selection of extra support points for polynomial regression (다항회귀모형에서의 추가받힘점 선택)

  • Kim, Young-Il;Jang, Dae-Heung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1491-1498
    • /
    • 2014
  • The major criticism of optimal experimental design is that it depends heavily on the model and its accompanying assumption that often leads the number of support points equal to the number of parameters in the model. Often in the past, a polynomial model of higher degree is assumed to handle the experimental design for the polynomial regression of lower degree. In this paper we searched the possible set of designs which are robust to the departure of the assumed model. The designs are categorized with respect to D-efficiency. The approach by O'Brien (1995) was discussed in univariate polynomial regression model setting.

An estimation method based on autocovariance in the simple linear regression model (단순 선형회귀 모형에서 자기공분산에 근거한 최적 추정 방법)

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2009
  • In this study, we propose a new estimation method based on autocovariance for selecting optimal estimators of the regression coefficients in the simple linear regression model. Although this method does not seem to be intuitively attractive, these estimators are unbiased for the corresponding regression coefficients. When the exploratory variable takes the equally spaced values between 0 and 1, under mild conditions which are satisfied when errors follow an autoregressive moving average model, we show that these estimators have asymptotically the same distributions as the least squares estimators. Additionally, under the same conditions as before, we provide a self-contained proof that these estimators converge in probability to the corresponding regression coefficients.

  • PDF

깁스표본기법을 이용한 설명변수 선택문제에서 사전분포의 설정-선형회귀모형을 중심으로-

  • 박종선;남궁평;한숙영
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.333-343
    • /
    • 1997
  • 선형회귀분석에서 변수의 선택문제는 최적의 모형을 찾는데 아주 중요한 부분을 차지한다. George와 McCulloch(1993)는 계층적 베이즈 모형과 깁스표본법을 이용하여 선형회귀모형에서 변수를 선택하는 문제를 고려하였다. 이 논문에서는 George와 McCulloch의 모형을 바탕으로 각각의 설명변수가 모형에 포함될 사전확률을 객관적인 기준에 의하여 결정하는 문제를 고려하여 보았다.

  • PDF

Variable Selection in PLS Regression with Penalty Function (벌점함수를 이용한 부분최소제곱 회귀모형에서의 변수선택)

  • Park, Chong-Sun;Moon, Guy-Jong
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.633-642
    • /
    • 2008
  • Variable selection algorithm for partial least square regression using penalty function is proposed. We use the fact that usual partial least square regression problem can be expressed as a maximization problem with appropriate constraints and we will add penalty function to this maximization problem. Then simulated annealing algorithm can be used in searching for optimal solutions of above maximization problem with penalty functions added. The HARD penalty function would be suggested as the best in several aspects. Illustrations with real and simulated examples are provided.

국채선물을 이용한 채권포트폴리오의 VECM과 VAR모형에 의한 헤지

  • Han, Seong-Yun;Im, Byeong-Jin;Won, Jong-Hyeon
    • The Korean Journal of Financial Studies
    • /
    • v.8 no.1
    • /
    • pp.231-252
    • /
    • 2002
  • 2000년 7월부터 채권시가평가의 실행으로 채권운용자들도 채권포트폴리오의 위험을 채권선물을 이용하여 통제하거나 감소시키기 위해 헤지를 하여야 한다. 이때 헤지비율을 추정하는 방법으로는 전통적 회귀분석모형, 백터오차수정모형(Vector Error Correction Model : VECM)과 VAR모형(Vector AutoRegressive Model)이 있다. 전통적인 회귀분석모형에 의하여 추정된 헤지비율은 시계열자료의 불안정성(nonstationary) 등으로 인하여 잘못 추정될 가능성이 있어 면밀한 검토와 분석 후 사용하여야 한다. 시계열자료의 불안정성으로 말미암아 야기되는 문제점들을 개선할 수 있는 모형으로서 VECM과 VAR모형이 널리 이용되고 있다. 따라서 본 연구는 VECM과 VAR모형을 사용하여 추정된 헤지비율과 전통적 회귀분석모형을 사용하여 추정한 헤지비율을 비교하여 어떤 모형으로 추정한 헤지비율이 더 정확한지를 평가하는데 목적을 두고 있다. 즉, 본 연구는 KTB 현 선물의 헤징에 대한 연구로 2000년 1월 4일부터 2001년 7월 27일까지 385일간의 KTB 현 선물 자료와 불룸버그 국채지수를 대상으로 VECM 및 VAR모형과 전통적 회귀분석모형에 의한 헤지비율을 추정하고 각 모형의 설명력과 예측력을 비교하고자 한다. 이 연구의 실증분석 결과, KTB 현물가격과 KTB 선물가격간, 블룸버그 국채지수와 KTB 선물가격간에는 공적분 관계가 존재하며, VECM 및 VAR와 전통적 회귀분석모형을 이용하여 추정한 최적헤지비율의 크기는 대동소이(大同小異)하며, 전통적 회귀분석방법을 이용하는 것이 VECM과 VAR모형을 이용할 때 보다 설명력과 예측력이 우월한 것으로 나타났다.

  • PDF

Fit of the number of insurance solicitor's turnovers using zero-inflated negative binomial regression (영과잉 음이항회귀 모형을 이용한 보험설계사들의 이직횟수 적합)

  • Chun, Heuiju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1087-1097
    • /
    • 2017
  • This study aims to find the best model to fit the number of insurance solicitor's turnovers of life insurance companies using count data regression models such as poisson regression, negative binomial regression, zero-inflated poisson regression, or zero-inflated negative binomial regression. Out of the four models, zero-inflated negative binomial model has been selected based on AIC and SBC criteria, which is due to over-dispersion and high proportion of zero-counts. The significant factors to affect insurance solicitor's turnover found to be a work period in current company, a total work period as financial planner, an affiliated corporation, and channel management satisfaction. We also have found that as the job satisfaction or the channel management satisfaction gets lower as channel management satisfaction, the number of insurance solicitor's turnovers increases. In addition, the total work period as financial planner has positive relationship with the number of insurance solicitor's turnovers, but the work period in current company has negative relationship with it.

Forecasting hierarchical time series for foodborne disease outbreaks (식중독 발생 건수에 대한 계층 시계열 예측)

  • In-Kwon Yeo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.499 -508
    • /
    • 2024
  • In this paper, we investigate hierarchical time series forecasting that adhere to a hierarchical structure when deriving predicted values by analyzing segmented data as well as aggregated datasets. The occurrences of food poisoning by a specific pathogen are analyzed using zero-inflated Poisson regression models and negative binomial regression models. The occurrences of major, miscellaneous, and overall food poisoning are analyzed using Poisson regression models and negative binomial regression models. For hierarchical time series forecasting, the MinT estimation proposed by Wickramasuriya et al. (2019) is employed. Negative predicted values resulting from hierarchical adjustments are adjusted to zero, and weights are multiplied to the remaining lowest-level variables to satisfy the hierarchical structure. Empirical analysis revealed that there is little difference between hierarchical and non-hierarchical adjustments in predictions based on pathogens. However, hierarchical adjustments generally yield superior results for predictions concerning major, miscellaneous, and overall occurrences. Without hierarchical adjustment, instances may occur where the predicted frequencies of the lowest-level variables exceed that of major or miscellaneous occurrences. However, the proposed method enables the acquisition of predictions that adhere to the hierarchical structure.

Quantile regression using asymmetric Laplace distribution (비대칭 라플라스 분포를 이용한 분위수 회귀)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1093-1101
    • /
    • 2009
  • Quantile regression has become a more widely used technique to describe the distribution of a response variable given a set of explanatory variables. This paper proposes a novel modelfor quantile regression using doubly penalized kernel machine with support vector machine iteratively reweighted least squares (SVM-IRWLS). To make inference about the shape of a population distribution, the widely popularregression, would be inadequate, if the distribution is not approximately Gaussian. We present a likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace density.

  • PDF