• Title/Summary/Keyword: 최적조도

Search Result 1,219, Processing Time 0.025 seconds

Optimum Design of Plane Steel Frame Structures Using Refined Plastic Hinge Analysis and SUMT (개선소성힌지해석과 SUMT를 이용한 평면 강골조의 연속최적설계)

  • Yun, Young Mook;Kang, Moon Myoung;Lee, Mal Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.21-32
    • /
    • 2004
  • In this study, a continuous optimum design model with its application program for plane steel frame structures developed. In the model, the sequential unconstrained minimization technique (SUMT) transforming the nonlinear optimization problem with multidesign variables and constraints into an unconstrained minimization problem and the refined plastic hinge analysis method as one of the most effective second-order inelastic analysis methods for steel frame structures were implemented. The total weight of a steel frame structure was taken as the objective function, and the AISC-LRFD code requirements for the local and member buckling, flexural strength, shear strength, axial strength and size of the cross-sectional shapes of members were used for the derivation of constraint equations. To verify the appropriateness of the present model, the optimum designs of serveral plane steel frame structures subject to vertical and horizontal loads were conducted.

Fuzzy Optimum Design of Plane Steel Frames Using Refined Plastic Hinge Analysis and a Genetic Algorithm (개선소성힌지해석과 유전자 알고리듬을 이용한 평면 강골조 구조물의 퍼지최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Shon, Su Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.147-160
    • /
    • 2006
  • GA-based fuzzy optimum design algorithm incorporated with the refined plastic hinge analysis method is presented in this study. In the refined plastic hinge analysis method, geometric nonlinearity is considered by using the stability functions of the beam-column members. Material nonlinearity is also considered by using the gradual stiffness degradation model, which considers the effects of residual stresses, moment redistribution through the occurence of plastic hinges, and the geometric imperfections of the members. In the genetic algorithm, the tournament selection method and the total weight of the steel frames. The requirements of load-carrying capacity, serviceability, ductility, and constructabil ity are used as the constraint conditions. In fuzzy optimization, for crisp objective function and fuzzy constraint s, the tolerance that is accepted is 5% of the constraints. Furthermore, a level-cut method is presented from 0 to 1 at a 0 .2 interval, with the use of the nonmembership function, to solve fuzzy-optimization problems. The values of conventional GA optimization and fuzzy GA optimization are compared in several examples of steel structures.

Optimum Design of Steel-Deck System for Two-Story Roads (2층도로용 강구조 덱 시스템의 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Kim, Hyun Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.553-564
    • /
    • 1998
  • Recently, more and more steel-deck structural system for two story roads has been adopted as a solution against traffic congestion in urban area, mainly because of fast construction, reduced self-weight, higher stiffness and efficient erection compared to that of concrete decks. The main objective is to study on the unit-elective optimal type and proportioning of a rational steel-deck system for two story roads using an optimum design program specifically developed for steel-deck systems. The objective function for the optimization is formulated as a minimum cost design problem. The behavior and design constraints are formulated based on the ASD(Allowable Stress Design) criteria of the Korean Bridge Design Code. The optimum design program developed in this study consists of two steps - the first step for the optimization of the steel box or plate girder viaducts, and the second step for the optimum design of the steel-decks with closed or open ribs. A grid model is used as a structural analysis model for the optimization of the main girder system, while the analysis of the deck system is based on the Pelican-Esslinger method. The SQP(Sequential Quadratic Programming) is used as the optimization technique for the constrained optimization problem. By using a set of application examples, the rational type related to the optimized steel-deck system designs is investigated by comparing the cost effectiveness of each type. Based on the results of the investigation it may be concluded that the optimal linear box girder and deck system with closed ribs may be utilized as one of the most rational and economical viaducts in the construction of two-story roads.

  • PDF

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.

Two-Phase Jet Flow Characteristics in the Pure Oxygen Aeration System Using Two-phase Jet Nozzle (이상 제트 노즐을 사용한 순산소 폭기시스템의 이상유동 특성)

  • Jung, Chan-Hee;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.258-263
    • /
    • 2009
  • Jet Loop Reactor(JLR), in which a two-phase nozzle is installed, is the new design technique for the treatment of high concentration wastewater by accelerating of oxygen contacting between substrate and surrounding bacteria. This numerical study of the two phase jet flow was conducted to find the optimum design of JLR. It was shown that there was a minimum velocity in the nozzle for continuous circulation of wastewater. The optimum location and the size of the draft tube for continuous circulation were examined. It was certain that the smaller the air size is, the more the effect of the mixing increases. The relation between the mixing effect and the turbulence was confirmed.

Characteristic of flow pattern and Particle Suspension in a Bottom Baffled Agitated Vessel (교반조 바닥의 방해판이 유동특성 및 입자부유에 미치는 특성)

  • Lee, Young-Sei
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1549-1554
    • /
    • 2015
  • This study examined experimentally the characteristics of the flow pattern and particle suspension in an agitated vessel with a bottom baffle. A flow pattern of the particles was shown to increase the upward flow from the center of the agitated vessel bottom. The suspended particles from the experiment found that the particle suspension was promoted by the development of an Ekman boundary layer. The optimal conditions of the impeller, and the agitated vessel bottom baffle within the experimental range were as follows: Impeller, $n_p=6$, d/D=0.5, and b/d=0.3; and bottom baffle, $n_b=6$, $d_b/D=0.5$ and $b_w/D=0.05$.

Optimum Design of Braced Steel Framed Structures Considering Soil Condition Under Earthquake Loads (지반조건을 고려한 브레이스된 강골조 구조물의 내진 최적설계)

  • Park, Moon-Ho;Kim , Ki-Wook;Lee , Seung-Jo;Park , Jung-Hwal
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.97-107
    • /
    • 2006
  • This study is structural analysis and continuous, discrete optimum design of braced steel frame structures under earthquake loads considering soil condition. The program which is able to perform simultaneously structural analysis and continuous, discrete optimum design, it is applied steel frame structures using unbraced, Z-braced, and X-braced types and analyze the program about static loads and seismic loads. The purpose of this study is to present proper braced type for seismic effects by comparing and analyzing results of analytic method about various cases using specially Newmark-Hall design spectrum, ATC design spectrum and ATC equivalent static analysis and finding minimum weight and design variables which satisfy the ultimate strength requirements of AISC-ASD specifications, the serviceability requirements and allowable story drift requirements of ATC-3-06 and various constraints.

Optimal Layout Simulation and Verification of LED Lighting for Improvement of Light Uniformity in Plant Factory (식물공장의 광 균일도 향상을 위한 LED 최적 배치 시뮬레이션 및 검증)

  • Lee, Hwa-Soo;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.381-383
    • /
    • 2012
  • 식물재배용 인공광 최적 배치에 따른 균일한 조도 분포는 고품질의 식물 생산을 가능하게 한다. 그러나 기존에 상용화된 식물재배시스템의 경우, 인공광 배치에 따른 조도 분포 시뮬레이션 등의 전처리 과정이 생략된 채 제작되어 생산 품질의 편차를 초래하는 문제점을 가지고 있다. 이에 본 논문은 식물재배단의 광 균일도 향상을 위해 조명 설계 소프트웨어인 Relux를 이용하여 LED 조명장치의 높이, 간격 등의 배치를 달리함에 따라 변화하는 각 재배단의 조도 분포 및 균일도, 그리고 전체 에너지 소비량 등을 사전에 시뮬레이션 함으로써 대상 식물재배에 적합한 조명장치의 최적 위치를 파악하고자 한다. 또한, 포터블 조도측정기를 이용하여 재배단의 각 식물의 위치를 기준으로 실 측정한 결과 데이터와 비교 분석 과정을 거쳐 본 시뮬레이션 결과의 신뢰도를 입증하고자 한다.

A Study on Led-Light Control using Laplace Analysis (Laplace 해석을 이용한 LED 조명 최적조도 제어에 관한 연구)

  • Park, Won-Woo;Jeong, Jae-Yong;Han, Ki-Jeong;Lee, Duk-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1009-1012
    • /
    • 2011
  • 본 연구는 실내의 조도를 균일하게 유지하기 위한 조명제어시스템(LMS) 및 그 알고리즘에 관한 것으로 특히 창가 및 실내에 배치한 조도센서로부터 얻어지는 조도(Luminance)값들을 경계조건으로 하여 조도분포에 관한 수학적 모델을 세운 후 Laplace 방정식의 조화함수(수치해석적 해)를 컴퓨터로 고속 시뮬레이션 함으로써 외부의 밝기변화에 따른 실내 조명등의 조도 분포를 차별화하여 제어하여 결과적으로 전력을 절감하면서도 실내 근무자에게 균일하고 자연스러운 조명환경을 제공할 수 있는 적응형 조명제어장치 및 그 알고리즘의 연구 내용을 소개하고 있다.

Multi-Objective Optimization for Orthotrpic Steel Deck Bridges (강상판교의 다목적 최적설계)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This study proposed a muti-objective optimum design method for rational optimizing of orthotropic steel deck bridges. This multi-objective optimum design method was found to be effective in optimizing multi-objective problems, considering cost and deflection functions. It may ve difficult to optimize orthotropic steel deck bridges using a conventional optimization, since the bridges have several parts and show complex structural behaviors. Therefore, the Pareto curve can be obtained by performing the multi-objective optimization for real orthotropic steel deck bridges, using the multi-level technique with excellent efficiency. A reasonable and economical design can be attained using the Parato curve in the cost and deflection functions of the bridge. Thus, more reasonable design values can be determined based on a comparison with those using a conventional design procedure.