Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.412-412
/
2017
강우빈도해석을 위해서는 확률분포선정이 우선적으로 이루어져야 한다. 우리나라에서는 사용상의 편리상, 기존 해석결과와의 연속성 등을 이유로 Gumbel 확률분포가 가장 일반적으로 활용되고 있다. 그러나, 분포형 선정에 따른 확률강수량의 차이가 크게 발생한다는 점에서 단순히 해석상의 편리성을 기준으로 분포형 선정이 이루어지는 것은 바람직하지 않다. 특히, 우리나라에서 강우빈도해석 시 분포형 선정은 형식적인 수준에 그치고 있으며, 주로 KS검정, 검정 등 적합도 검정을 통해 고려된 분포형의 통계적 유의성만을 평가하고 있다. 그러나, 최적 분포형 선정이라는 관점에서 이러한 유의성 검정보다는 정량적인 지표를 기준으로 확률분포형 선정이 이루어지는 것이 적합할 것으로 판단된다. 즉, 자료의 설명력이 가장 우수한 분포를 정량적 지표를 기준으로 추정하는 것이 수문통계학적으로 적합성을 갖는다. 이러한 점에서 본 연구에서는 우도함수, BIC 및 AIC를 기준으로 우리나라 주요 강수지점에서 대해서 최적 분포형을 선정하고, 기존 Gumbel 분포를 기준으로 산정된 확률강수량과의 양적차이를 평가해보고자 한다.
수자원 개발계획 및 수공구조물 설계자료로서 가장 기본적인 사항은 계획수문량설정의 적정화에 있지 않는가 생각한다. 본 고에서는 우리나라에서의 확률강우량 산정방법에 기여코저 과거의 국내외 여러 학자들이 제창한 바를 바탕으로 국내 주요지점 가운데 2개지점(서울, 대구)을 실례로 들어 여러 가지 경우의 확률강우량식들을 비교검토하여 기술한 것이다. 그 결과 아래와 같은 몇가지 사항을 제시하여 본고를 여미고저 하는 바이다. 1. 확률강우량 산정에는 각 지점별로 최적지점우량 분포형을 먼저 결정하고 그 최적분포형에 부합되는 통계처리 과정을 밟아야 한다. 2. 본 고에서 채택한 2개 지점의 지점우량분포형 검정결과로는 서울 지점이 입방근정규분 분포에 속하며 대구지점은 평방근정규분포형을 제시하고 있다. 3. 각 지점별 강우특성과 최적분포형 설정결과로 보아 기왕의 최대치 위주의 확률강우량 산정방식보다 본고에서 기술한 5. (각종 산정방법에 의한 확률강우량의 비교검토)에서의 (C)방법이 가장 합리적이며 타당한 방법이라고 생각한다.
The present study is to develop the hydrologic analysis procedure for the purpose of drawing the probable isohyetal charts in Korea. In the establishment of optimal distribution types, the eleven continuous probability distribution types included the transformed variable normal distribution (Y-k method) is applied to the annual maximum rainfall depth series in each duration. The optimal selection of distribution is done by Chi-square test and Kolmogorov-Smirnov test in the eui-class interval. The application of probability distribution is checked by the fitting on four durations of annual maximum rainfall data(10 min., 60 min., 6 hrs., and 24hrs.) at four meteorological stations in Korea (Seoul, In Cheon, Bu san, and Kwang Ju). The properties in hydrologic application of the considered distribution and the hydrologic characteristics of the applied rainfall data groups are investigated from the results of this study.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.136-136
/
2020
홍수와 가뭄은 우리나라에 대표적인 수재해로서 관련 연구도 활발히 진행되고 있다. 반면 겨울철에 발생하는 적설의 경우 발생빈도와 피해가 상대적으로 적었으며 관련 연구 또한 미비한 실정이다. 우리나라 일부 남부지방은 강우와 다르게 연중 눈이 내리지 않는 경우가 존재하며, 자료 중 '0'값을 가지게 된다. 이로 인해 최적분포형 선정 및 매개변수 추정에 어려움이 있으며, 특히 '0'값으로 인해 단일 확률분포를 이용한 빈도해석은 한계가 있다. 본 연구에서는 연중 눈이 내리지 않는 무적설량을 고려하기 위하여 두 가지 이상의 확률분포함수를 결합한 혼합분포함수를 개발하였다. Bayesian 기법을 이용하여 무강우의 기준이 되는 값(δ)을 매개변수로 고려하여 추정하였으며, 이에 따른 적설발생 평균확률(P을 Mixing Ratio로 고려하여 혼합분포함수를 제시하였다. 본 연구에서는 기상청 산하 관측소 중 20년 이상의 지점을 선정하여 최심신적설량을 활용하였으며, 빈도별 확률적설심을 산정하였다. 적합한 확률분포형 선정을 위해 먼저 Bayesian 기법으로 매개변수와 우도함수를 산정한 후 각 분포형의 BIC(bayesian information criterion)값을 비교하였다. 선정된 최적분포형에 대해 빈도분석을 실시하여 최심신적설량을 제시하였다. 추가적으로 무강우를 기존 기준인 '0'으로 고정하여 본 연구에서 제시한 결과 값과 비교하였다.
The purpose of this study is to investigate how the degree of distribution influences the calibration of snow and runoff in distributed hydrological models using a multi-criteria calibration method. The Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) developed by NOAA-National Weather Service (NWS) is employed to estimate optimized parameter sets. We have 3 scenarios depended on the model complexity for estimating best parameter sets: Lumped, Semi-Distributed, and Fully-Distributed. For the case study, the Durango River Basin, Colorado is selected as a study basin to consider both snow and water balance components. This study basin is in the mountainous western U.S. area and consists of 108 Hydrologic Rainfall Analysis Project (HRAP) grid cells. 5 and 13 parameters of snow and water balance models are calibrated with the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm. Model calibration and validation are conducted on 4km HRAP grids with 5 years (2001-2005) meteorological data and observations. Through case study, we show that snow and streamflow simulations are improved with multiple criteria calibrations without considering model complexity. In particular, we confirm that semi- and fully distributed models are better performances than those of lumped model. In case of lumped model, the Root Mean Square Error (RMSE) values improve by 35% on snow average and 42% on runoff from a priori parameter set through multi-criteria calibrations. On the other hand, the RMSE values are improved by 40% and 43% for snow and runoff on semi- and fully-distributed models.
The flood forecasting model currently used in Korea calculates the runoff of basin using the lumped rainfall-runoff model and estimates the river level using the river and reservoir routing models. The lumped model assumes homogeneous drainage zones in the basin. Therefore, it can not consider various spatial characteristics in the basin. In addition, the rainfall data used in lumped model also has the same limitation because of using the point scale rainfall data. To overcome the limitations as mentioned above, many researchers have studied to apply the distributed rainfall-runoff model to flood forecasting system. In this study, to apply the Grid-based Rainfall-Runoff Model (GRM) to the Korean flood forecasting system, the optimal resolution is determined by analyzing the difference of the results of the runoff according to the various resolutions. If the grid size is to small, the computation time becomes excessive and it is not suitable for applying to the flood forecasting model. Even if the grid size is too large, it does not fit the purpose of analyzing the spatial distribution by applying the distributed model. As a result of this study, the optimal resolution which satisfies the accuracy of the bsin runoff prediction and the calculation speed suitable for the flood forecasting was proposed. The accuracy of the runoff prediction was analyzed by comparing the Nash-Sutcliffe model efficiency coefficient (NSE). The optimal resolution estimated from this study will be used as basic data for applying the distributed rainfall-runoff model to the flood forecasting system.
Kim, Dong-Yeob;Lee, Sang-Ho;Hong, Young-Joo;Lee, Eun-Jai;Im, Sang-Jun
Korean Journal of Agricultural and Forest Meteorology
/
v.12
no.2
/
pp.83-94
/
2010
The objective of this study was to determine the best probability distributions of annual, seasonal and monthly precipitation in Korea. Data observed at 32 stations in Korea were analyzed using the L-moment ratio diagram and the average weighted distance (AWD) to identify the best probability distributions of each precipitation. The probability distribution was best represented by 3-parameter Weibull distribution (W3) for the annual precipitation, 3-parameter lognormal distribution (LN3) for spring and autumn seasons, and generalized extreme value distribution (GEV) for summer and winter seasons. The best probability distribution models for monthly precipitation were LN3 for January, W3 for February and July, 2-parameter Weibull distribution (W2) for March, generalized Pareto distribution (GPA) for April, September, October and November, GEV for May and June, and log-Pearson type III (LP3) for August and December. However, from the goodness-of-fit test for the best probability distributions of the best fit, GPA for April, September, October and November, and LN3 for January showed considerably high reject rates due to computational errors in estimation of the probability distribution parameters and relatively higher AWD values. Meanwhile, analyses using data from 55 stations including additional 23 stations indicated insignificant differences to those using original data. Further studies using more long-term data are needed to identify more optimal probability distributions for each precipitation.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.207-207
/
2018
현행 홍수예보모형은 집중형 모형을 이용하여 강우-유출을 계산하고 하천의 수위를 예측한다. 집중형 모형은 유역을 동질의 배수구역으로 가정하여 공간적인 변화를 고려하지 못하는 한계가 있어 하나의 유역 내에 산지와 평지가 혼재하는 하천의 상류지역은 지형의 공간적인 분포가 반영되어야 정확한 홍수예측이 가능하다. 따라서 본 연구에서는 금호강 유역에 대해서 분포형 유역유출모형을 적용하고 다양한 해상도와 유역분할을 수행한 해석결과를 비교하여 분포형 유역유출모형을 최적화 하였다. 타 강우자료의 활용성을 높이기 위해 유역의 분할은 수자원단위지도에서 제시한 표준유역 단위로 분할하였고, 격자의 해상도는 최소 100m에서 최대 500까지 변화를 주어 유역유출결과에 영향을 미치지 않는 최대크기의 격자의 크기를 찾아 홍수예보모형에 적용할 수 있는 최적화된 격자의 크기를 소유역별로 도출하였다. 본 연구의 결과를 통해 유역유출 예측의 정확성은 만족시키면서 홍수예보에 적합한 계산속도가 나올 수 있는 최적 해상도를 제시하였으며 분포형 모형의 적용을 전국적으로 확대하고자 할 때 기초자료로 활용이 가능할 것으로 기대된다.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.399-400
/
2017
홍수나 가뭄 등 극치 현상의 통계분석 및 빈도해석에 있어 극치분포형이 널리 사용되고 있으며, 이러한 극치분포형의 특성을 이해하기 위해서는 분포형의 오른쪽 꼬리(right tail) 부분 특성을 자세히 분석할 필요가 있다. 이에 따라 본 연구에서는 Monte Carlo 모의를 통하여 다양한 극치분포형의 오른쪽 꼬리 부분의 통계적 특성 및 그 예측 능력을 연구하였다. 극치분포형으로는 우리나라 확률수문량 산정에 널리 활용되고 있는 generalized extreme value (GEV), Gumbel, generalized logistic 분포를 사용하였으며, 매개변수 산정 방법으로는 확률가중모멘트법을 사용하였다. 모의실험의 모분포로는 수문빈도해석에서 많이 사용되는 GEV 분포를 사용하였고, 30년 이상 자료를 보유한 기상청 지점 자료의 왜곡도를 조사하여 모의실험에 사용되는 모집단의 왜곡도로 가정하여 표본 자료를 발생시켰다. 예측 능력의 평가는 재현기간 10~1000년의 확률수문량을 왜곡도계수를 고려한 GEV 도시위치공식을 이용하여 GEV 확률지에 도시하고, 평균제곱근오차(root mean square error), 편의(bias), 평균상대오차(mean relative difference), 평균절대상대오차(mean absolute relative difference)를 이용하여 최적 분포형을 선정함으로써 이루어진다. 또한 예측 능력 평가결과의 타당성 확인을 위해 극치분포형의 적합정도를 잘 나타낸다고 알려진 modified Anderson-Darling 방법의 검정결과와 비교하여 적절성을 확인하였다.
Journal of the Korean Society of Hazard Mitigation
/
v.7
no.2
s.25
/
pp.53-63
/
2007
This study is to evaluate the probable snowfall depth by the point frequency analysis and to draw the map of probable snowfall depth in Korea. The 14 probability distributions which has been widely used in hydrologic frequency analysis are applied to the annual maximum depth of snowfall data. The parameters of each probability distribution are estimated by method of moments, maximum likelihood method and method of probability weighted moments. The estimated parameters were checked by parameter validity conditions of each assumed probability distribution. Four tests that are $X^2-test$, Kolmogorov-Smirnov test, Cramer von Mises test and probability plot correlation coefficient test are used in this study to determine the goodness of fit of the distributions. Mostly the 2-parameter gamma distribution was determined as appropriate distribution for the annual maximum new snowfall depth. The probable snowfall depth were obtained from appropriate distribution for the selected return periods and the maps of probable snowfall depth were presented. It will be useful to specify the snowfall load for the design of agricultural facilities such as vinyl house and cattle shed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.