• Title/Summary/Keyword: 최적공사비

Search Result 82, Processing Time 0.028 seconds

Reliability Analysis for Optimization of Construction Method of Drain Material (배수재 시공의 최적화를 위한 신뢰성 해석)

  • Ahn, Hyeon-Min;Kim, Moon-Chae;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.87-96
    • /
    • 2014
  • In this paper, reliability analysis was done on the characteristics of consolidation and settlement for the inner temporary dike where a weak ground improvement construction was applied. When the consolidation analysis on the foundation ground was done, the following conclusions were obtained by conducting the stability analysis on the effect of space of drains, the effect of consolidation time, and the residual settlement and differential settlement. When construction was done with a drain space which satisfied 95% probability of reaching a target consolidation in each divided area, the occurrence of a residual settlement was within the range, which did not exceed 10cm. It was shown that there was almost no possibility of the occurrence of differential settlement, which was above the permissible differential settlement slope.

The application of reliability analysis for the design of storm sewer (우수관의 설계를 위한 신뢰성해석기법의 적용)

  • Kwon, Hyuk Jaea;Lee, Kyung Je
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.887-893
    • /
    • 2018
  • In this study, the optimum design technology is suggested by using reliability analysis method. Nowadays, urban flood inundation is easily occurred because of local heavy rain. Traditional deterministic design method for storm sewer may underestimate the size of pipe. Therefore, stochastic method for the storm sewer design is necessary to solve this problem. In the present study, reliability model using FORM (First Order Reliability Method) was developed for the storm sewer. Developed model was applied to the real storm sewers of 5 different areas. Probability of exceeding capacity has been calculated and construction costs according to diameter have been compared. Probability of exceeding capacity of storm sewers of 5 areas have been calculated after estimating the return period of rainfall intensity.

Proper Mixing Ratio for Securing Quality of Free-form Panel (비정형 패널의 형상 품질확보를 위한 적정 배합비 도출)

  • Kim, Min-Sik;Park, Chae-Wool;Kim, Ki-Hyuk;Do, Sung-Lok;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.449-456
    • /
    • 2019
  • Recent developments in architectural technologies and programs have enabled architects to think creatively and design free-form architecture. however, there are many problems in the production technology of FCP(Free-Form Concrete Panel). In particular, reduced accuracy due to lack of free-form panel production technology can lead to redesign of buildings as a result, problems such as an increase in construction cost and period. Therefore, this experiment aimed to compensate the decrease of the accuracy according to the displacement difference and to derive the proper mixing ratio for maintaining the shape during the free-form panel curing. In this study, molds were made using paraffin that is a recyclable phase change material. Concrete Panel is usually produced from Portland cement, dead burn magnesia, phosphate, borax and fine aggregate. In this study, four mixing ratios of FCP were selected after each material was blended to determine the proper blending ratio of the fluidity phase, the water absorption rate and the water content of the test piece. FCP was fabricated on the basis of the selected four compounding ratios and thickness and error rate were measured. Based on the error rate of the measured FCP, the quality standard was satisfied among the four compounding ratios.

Evaluation of Economic L/W Ratio and the Best Shape of Baffle in Clearwell by Using CFD (전산유체를 활용한 정수지 최적 도류벽 형태 및 경제적인 장폭비 산정)

  • Cho, Young-Man;Roh, Jae-Soon;Bin, Jae-Hoon;Kim, Tae-Kyun;Choi, Young-June
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.432-438
    • /
    • 2011
  • We need to make the standard of the best baffle shape and L/W ratio of clearwell due to insufficient disinfection in short L/W ratio and uneconomic design in long L/W ratio. The objectives of this research were to evaluate the best shape of baffle and economic L/W ratio in the all sorts of shape and size by using computational fluid dynamics. In the results of this research, the baffle with smaller number of turning flow is more beneficial for hydraulic efficiency. So, even if the same shape and structure, baffle should be designed as smaller number in turning flow. The best shape of baffle is ZigZag type (model 2) and the worst shape is Distributed types (model 4). The ZigZag type can reduce number of baffle about 67% than that of the Distributed types. In the ZigZag type, economic L/W ratio is 30~50. If L/W ratio exceed over 50, it is not economic because construction costs greatly increase and an increasing rate of $T_{10}/T$ is very small.

A Sludge Collector Selection Model by Life Cycle Cost Analysis (LCC분석에 의한 슬러지수집기 선정 모델)

  • Lee, Seung-Hoon;Woo, Yu-Mi;Lee, Sung-Rak;Koo, Kyo-Jin;Hyun, Chang-Taek;Hong, Tae-Hoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.6
    • /
    • pp.175-184
    • /
    • 2006
  • This study focused on developing Life Cycle Cost(LCC) analysis model for selecting sludge collectors in wastewater treatment system and applying the model to a case study. Cost items are examined through literature review and historical data of a facility. Analysis period, discount rate, energy cost escalation ratio are assumed to reasonable level. Monetary evaluation is performed using historical data and estimations from vendors. Sensitive analysis is executed using Monte Carlo Simulation for assumed factors. Interviews with operators, vendors, constructors, managers are conducted to define factors which indicates ease of maintenance, ease of delivery, technical performance, efficiency, environmental friendship. Factors are representing technical and social factors. Results from LCC analysis and qualitative analysis are evaluate together with Weighted Matrix Evaluation Methods for optimum alternative of sludge collectors.

A study on the optimal reinforced zone of a small sectional shield TBM tunnel in difficult ground (특수지반 구간의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung-Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.735-747
    • /
    • 2019
  • Due to the lack of ground space by urbanization, the demand of utility tunnels for laying social facilities is increasing. During the construction of a utility tunnel in downtown area using a shield TBM, various problems may occur when difficult ground is encountered such as mixed ground and cobbly ground. Thus, in this study, using MIDAS GTS NX (Ver. 280), a numerical analysis was performed on characteristics of difficult ground, reinforced area, depth of cover and groundwater level to analyze the optimal ground reinforced area according to combination of parameters. As a result, it was difficult to secure stability in unconstrained excavation cases on both the mixed ground and the cobbly ground. However, when ground reinforcement grouting as much as 2.0D is applied, convergence occurred within the allowable limit, except for mixed ground with a depth of cover 30 m. In addition, excessive leakage occurred during excavation of both the mixed ground and the cobbly layers. It was able to secure stability after applying waterproof grouting.

A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent (증점제를 사용한 저분체 고유동 콘크리트의 특성에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.689-696
    • /
    • 2017
  • The practical applications of ordinary high-fluidity concrete have been limited due to several drawbacks, such as high hydration heat, high amount of shrinkage, and non-economic strength development. On the other hand, due to its advantages, such as improvement of construction quality, reduction of construction cost and period, the development of high-fluidity concrete is a pressing need. This study examined the properties of high-fluidity concrete, which can be manufactured on the low binders using a viscosity agent to prevent the segregation of materials. The optimal viscosity agent was selected by an evaluation of the mechanical properties of high-fluidity concrete among six viscosity agents. The acrylic type and urethane type viscosity agents showed the best performance within the range where no material separation occurred. The mechanical properties were evaluated to examine the optimal amount of AC and UT viscosity agent added by mixing two viscosity agents according to the adding ratio and blending them together with high performance water reducing agent. When the ratio of the AC : UT viscosity agents was 5:5, it was most suited for high-fluidity concrete with low binders by increasing the workability and effect of the reducing viscosity.

A Proposal for Optimizing Unit Modular System Process to Improve Efficiency in Off-site Manufacture, Transportation and On-site Installation (유닛 모듈러 공법의 효율성 확보를 위한 공장제작, 운반, 현장설치의 최적 공정 제안)

  • Lee, Kwang-Bok;Kim, Kyung-Rai;Shin, Dong-Woo;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.14-21
    • /
    • 2011
  • A unit modular system is a construction method which installs on site by manufacturing 50%~90% of the whole process in the factory. This method can minimize the process in the site and maximize the operation, which will reduce the duration and improve the overall quality. The recent paradigm of construction is to be sustainable building. Modular system can be regarded as a sustainable building construction method because it can reduce the amount of construction waste by recycling partial or whole part of overdue building be torn down. A unit modular system is the answer to cope with the increasing market of small size housings. A unit modular system is the most appropriate option at this point. This research proposes the standard operation and construction process of modular system, which enable to optimal system. A case study of reconstructing small-size housing was introduced to support this proposal. Finished unit modular is the reasonable way. However, 80% of complication rate of the modular is the most rational when a defect occurrence during delivery is considered.

A study on the optimal reinforcement area for excavation of a small cross-section shield TBM tunnel in fault fracture zone through parameter analysis (매개변수 분석을 통한 단층파쇄대의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.261-275
    • /
    • 2020
  • When excavating a small cross-section tunnel in a fault fracture zone using the shield TBM method, there is a high possibility of excessive convergence and collapse. Appropriate ground reinforcement is required to minimize construction cost loss and trouble due to a fault fracture zone. In this study, the optimal reinforcement area was suggested and the surrounding ground behavior was investigated through numerical analysis using MIDAS GTS NX (Ver. 280). For the parameters, the width of the fault fracture zone, the existence of fault gouge, and the groundwater level and depth of cover were applied. As a result, when there is not fault gouge, the convergence and ground settlement are satisfied the standard when applying ground reinforcement by up to 0.5D. And, due to the high permeability coefficient, it is judged that it is necessary to apply 0.5D reinforcement. There is a fault gouge, it was possible to secure stability when applying ground reinforcement between the entire fault fracture zone from the top of the tunnel to 0.5D. And, because the groundwater discharge occurred within the standard value due to the fault gouge, reinforcement was unnecessary.

A Study on the Construction for Optimal Network of Metro Transfer System in Yangsan Area (양산지역 도시철도 환승체계 최적노선망 구축에 관한 연구)

  • Choi, Yang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1D
    • /
    • pp.27-36
    • /
    • 2010
  • Recently, the management of metro business in large cities has become more difficult because of increased construction and operation costs. The purpose of this paper presents the construction of transfer system to resolve about recent tendency to decrease of metro-users and diminution of use efficiency which are serious problems of Busan metro. To cope with this situation, it is necessary to examine the methods of obtaining returns on development profits of land value rises that occur due to transfer system construction between Busan metro line #1 and line #2 in Yangsan area. Therefore, it was made use of research on metro utilization to presuppose service improvement, as an alternative, in the transfer system construction between metro and metro which might be powerful influence over metro-users. In this research, it was examined the actual situation of rises in land values brought about by the transfer system construction of metro line #1 and line #2 in Yangsan area with application of four (4) methods, and have calculated a basis of the development profits produced by the transfer system construction of metro line. According to the economical efficiency analysis, the total construction cost amount to 4,827.1 billion won of case #1 based on single track, and evaluate economically as B/C to 1.013, NPV to 72.7 billion, IRR to 5.614 percent.