• 제목/요약/키워드: 최소 회전 반지름

검색결과 4건 처리시간 0.019초

실험 데이터를 이용한 회전운동 순간 중심점 분석 프로그램 개발(I) (Development of a Program That Computes the Position of the Instantaneous Center of Rotation on the Basis of Experimental Data(I))

  • 박진;신기훈
    • 한국운동역학회지
    • /
    • 제19권4호
    • /
    • pp.779-791
    • /
    • 2009
  • 본 연구의 목적은 원위지점에서 움직이는 실험 데이터를 이용하여 그 점들의 회전운동 순간 중심점을 분석하는 프로그램(Centering 1.0)을 개발하는 것이다. 이를 위해 수학적인 알고리즘을 정의하고, 물체의 운동에 대한 실험 데이터를 입력하여 회전운동 순간 중심점을 찾아내는 컴퓨터 프로그램을 구현하였다. 프로그램을 검증하기 위한 실험 데이터는 한명의 숙련된 여성골퍼의 피칭(40m 캐리)과 퍼팅(4m) 스트로크 시 클럽의 움직임으로 수집하였다. 그리고 이 데이터를 본 연구를 통해 개발된 회전운동 순간 중심점 분석 프로그램에 적용하여 클럽의 움직임 시 회전의 중심점을 찾고, 그 위치의 크기를 반지름으로 나타내었다. Centering 1.0 프로그램은 구간을 크게 정의할 때 반지름의 오차가 약간 있었으나, 구간을 작게 나눌수록 매우 근사치의 값을 제시하여주었다. 피칭과 퍼팅을 비교할 경우에 피칭의 반지름이 퍼팅보다 매우 작게 나타났으며, 퍼팅의 경우 중심의 위치는 인체 내에 있지 않고 최고 3m 외부에 위치하는 것으로 나타났다. Centering 1.0 프로그램은 회전운동에서 구한 데이터의 최소 3개만 입력하면 반지름 값을 알 수 있으며, 이것이 누적되면 회전운동 순간 중심점의 이동경로를 알 수 있다.

기하학 정보를 이용한 3차원 모델 검색 (3D Model Retrieval Using Geometric Information)

  • 이기호;김낙우;김태용;최종수
    • 한국통신학회논문지
    • /
    • 제30권10C호
    • /
    • pp.1007-1016
    • /
    • 2005
  • 본 논문은 3차원 모델의 모양 기반 검색을 하기 위한 모델의 특징을 추출하는 방법을 제시한다. 3차원 모델의 특징 기술자는 모델에 대한 위치, 회전, 크기 변환에서 그 특징이 불변해야 하기 때문에, 모델을 정규 좌표계로 표시하기 위한 선(先)처리 작업이 필요하다. 우리는 선처리 작업을 위해서 주성분 분석 방법을 사용하였으며, 이 방법은 최소 경계 상자와 외접구의 생성을 위해서도 이용되었다. 제안한 알고리즘은 다음과 같다. 반지름 1인 외접구를 만들고, 구의 중심에 3차원 모델을 위치시킨 후, 반지름이 다른 동심구($r_i=i/n,\;i=1,2,{\ldots},n$)를 생성하고, 이 동심구들과 모델이 접하는 면을 구한 다음 그 면에 대한 곡률을 계산한다. 여기서 구한 곡률을 3차원 모델의 특징 기술자로 사용하게 된다. 실험 결과는 타 알고리즘에 비해 제안하는 방법이 상대적으로 적은 빈(bin) 수를 가졌음에도 불구하고 ANMRR 평가 함수에 의해 최소 0.1에서 0.6 이상의 성능 개선 효과가 나타나고 있음을 보여 준다. 본 논문은 색인 기법으로 $R{^*}-tree$를 사용하였다.

컨테이너 운송용 AGV의 운동궤적에 관한 연구 (A Study on the Driving Trajectory of AGV for Container Transport)

  • 박정보;김민주;이승수;김중완;전언찬
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.96-102
    • /
    • 2004
  • In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. and AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and a center of turning in accordance with fourth ways of steering mode. As the result of this study, we have confirmed that this tool is useful and cost-effective in the dynamic analysis or large size vehicles. Also, it is useful to calculate the minimum radius of turning for large size vehicles.

컨테이너 운송용 AGV의 운동궤적에 관한 연구 (A Study on Driving Trajectory of AGV for Container Transport)

  • 이지용;김민주;이승수;김중완;전언찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1076-1081
    • /
    • 2004
  • In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. And AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and center of turning in accordance with four way of steering modes. Throughout some computer simulations, we have confirmed that this tool is useful to analysis dynamic problems and to calculate minimum radius of turning for large size vehicles.

  • PDF